13,586 research outputs found
Results from thinning experiments in 2002 and 2003
In 2002 an experiment about thinning blossoms of the apple variety 'Pinova' lime sulfur (in 2002 45
% thinning) and sodium salt (21 % thinning) showed good effects, the number of blossom-clusters
in 2003 was very high in the lime sulfur parcels. Results from extracts of Hericium erinaceum in
2003 have to be replicated again, the number of applications must be increased
Higher Gauge Theory and Gravity in (2+1) Dimensions
Non-abelian higher gauge theory has recently emerged as a generalization of
standard gauge theory to higher dimensional (2-dimensional in the present
context) connection forms, and as such, it has been successfully applied to the
non-abelian generalizations of the Yang-Mills theory and 2-form
electrodynamics. (2+1)-dimensional gravity, on the other hand, has been a
fertile testing ground for many concepts related to classical and quantum
gravity, and it is therefore only natural to investigate whether we can find an
application of higher gauge theory in this latter context. In the present paper
we investigate the possibility of applying the formalism of higher gauge theory
to gravity in (2+1) dimensions, and we show that a nontrivial model of
(2+1)-dimensional gravity coupled to scalar and tensorial matter fields - the
model - can be formulated both as a standard gauge theory and
as a higher gauge theory. Since the model has a very rich structure - it admits
as solutions black-hole BTZ-like geometries, particle-like geometries as well
as Robertson-Friedman-Walker cosmological-like expanding geometries - this
opens a wide perspective for higher gauge theory to be tested and understood in
a relevant gravitational context. Additionally, it offers the possibility of
studying gravity in (2+1) dimensions coupled to matter in an entirely new
framework.Comment: 22 page
Full-field structured-illumination super-resolution X-ray transmission microscopy
Modern transmission X-ray microscopy techniques provide very high resolution at low and medium X-ray energies, but suffer from a limited field-of-view. If sub-micrometre resolution is desired, their field-of-view is typically limited to less than one millimetre. Although the field-of-view increases through combining multiple images from adjacent regions of the specimen, so does the required data acquisition time. Here, we present a method for fast full-field super-resolution transmission microscopy by structured illumination of the specimen. This technique is well-suited even for hard X-ray energies above 30 keV, where efficient optics are hard to obtain. Accordingly, investigation of optically thick specimen becomes possible with our method combining a wide field-of-view spanning multiple millimetres, or even centimetres, with sub-micron resolution and hard X-ray energies
Observation of narrow-band noise accompanying the breakdown of insulating states in high Landau levels
Recent magnetotransport experiments on high mobility two-dimensional electron
systems have revealed many-body electron states unique to high Landau levels.
Among these are re-entrant integer quantum Hall states which undergo sharp
transitions to conduction above some threshold field. Here we report that these
transitions are often accompanied by narrow- and broad-band noise with
frequencies which are strongly dependent on the magnitude of the applied dc
current.Comment: 4 pages, 3 figure
Single electron capacitance spectroscopy of vertical quantum dots using a single electron transistor
We have incorporated an aluminum single electron transistor (SET) directly on
top of a vertical quantum dot, enabling the use of the SET as an electrometer
that is extremely responsive to the motion of charge into and out of the dot.
Charge induced on the SET central island from single electron additions to the
dot modulates the SET output, and we describe two methods for demodulation that
permit quantitative extraction of the quantum dot capacitance signal. The two
methods produce closely similar results for the determined single electron
capacitance peaks.Comment: Submitted to Applied Physics Letters (reformatted to fit correctly on
a page
Foot and mouth disease in Zambia: Spatial and temporal distributions of outbreaks, assessment of clusters and implications for control
Zambia has been experiencing low livestock productivity as well as trade restrictions owing to the occurrence of foot and mouth disease (FMD), but little is known about the epidemiology of the disease in these endemic settings. The fundamental questions relate to the spatio-temporal distribution of FMD cases and what determines their occurrence. A retrospective review of FMD cases in Zambia from 1981 to 2012 was conducted using geographical information systems and the SaTScan software package. Information was collected from peer-reviewed journal articles, conference proceedings, laboratory reports, unpublished scientific reports and grey literature. A space–time permutation probability model using a varying time window of one year was used to scan for areas with high infection rates. The spatial scan statistic detected a significant purely spatial cluster around the Mbala–Isoka area between 2009 and 2012, with secondary clusters in Sesheke–Kazungula in 2007 and 2008, the Kafue flats in 2004 and 2005 and Livingstone in 2012. This study provides evidence of the existence of statistically significant FMD clusters and an increase in occurrence in Zambia between 2004 and 2012. The identified clusters agree with areas known to be at high risk of FMD. The FMD virus transmission dynamics and the heterogeneous variability in risk within these locations may need further investigation
New Physics in High Landau Levels
Recent magneto-transport experiments on ultra-high mobility 2D electron
systems in GaAs/AlGaAs heterostructures have revealed the existence of whole
new classes of correlated many-electron states in highly excited Landau levels.
These new states, which appear only at extremely low temperatures, are
distinctly different from the familiar fractional quantum Hall liquids of the
lowest Landau level. Prominent among the recent findings are the discoveries of
giant anisotropies in the resistivity near half filling of the third and higher
Landau levels and the observation of re- entrant integer quantum Hall states in
the flanks of these same levels. This contribution will survey the present
status of this emerging field.Comment: 8 pages, 9 figures. To be published in the Proceedings of the 13th
International Conference on the Electronic Properties of Two-Dimensional
System
Reply to Simon's Comment on "Evidence for an Anisotropic State of Two-Dimensional Electrons in High Landau Levels"
We recently reported [PRL 82, 394 (1999)] large transport anisotropies in a
two-dimensional electron gas in high Landau levels. These observations were
made utilizing both square and Hall bar sample geometries. Simon recently
commented [cond-mat/9903086] that a classical calculation of the current flow
in the sample shows a magnification of an underlying anisotropy when using a
square sample. In this reply we present more recent data obtained with a very
high mobility sample, and reiterate that, with or without magnification, an
anisotropic state develops in high Landau levels at very low temperatures.Comment: 1 page, 1 figur
Measurements of quasi-particle tunneling in the nu = 5/2 fractional quantum Hall state
Some models of the 5/2 fractional quantum Hall state predict that the
quasi-particles, which carry the charge, have non-Abelian statistics: exchange
of two quasi-particles changes the wave function more dramatically than just
the usual change of phase factor. Such non-Abelian statistics would make the
system less sensitive to decoherence, making it a candidate for implementation
of topological quantum computation. We measure quasi-particle tunneling as a
function of temperature and DC bias between counter-propagating edge states.
Fits to theory give e*, the quasi-particle effective charge, close to the
expected value of e/4 and g, the strength of the interaction between
quasi-particles, close to 3/8. Fits corresponding to the various proposed wave
functions, along with qualitative features of the data, strongly favor the
Abelian 331 state
- …