123 research outputs found
Direct and reflected self-concept show increasing similarity across adolescence: A functional neuroimaging study
In adolescence, the perceived opinions of others are important in the construction of one's self-concept. Previous
studies found involvement of medial Prefrontal Cortex (mPFC) and temporal-parietal junction (TPJ) in direct
(own perspective) and reflected (perceived perspective of others) self-evaluations, but no studies to date examined differences in these processes across adolescence. In this study, 150 adolescents between 11 and 21 years
old evaluated their traits from their own perspective and from the perceived perspective of peers in a fMRI
session. Results showed overlapping behavioural and neural measures for direct and reflected self-evaluations, in
mPFC, precuneus and right TPJ. The difference in behavioural ratings declined with age, and this pattern was
mirrored by activity in the mPFC, showing a diminishing difference in activation for direct > reflected selfevaluations with increasing age. Right TPJ was engaged more strongly for reflected > direct evaluations in
adolescents who were less positive about themselves, and those who showed who showed less item-by-item
agreement between direct and reflected self-evaluations. Together, the results suggest that the internalization of
others' opinions in constructing a self-concept occurs on both the behavioural and neural levels across adolescence, which may aid in developing a stable self-concept
Coronary atherosclerosis in diabetes mellitus A population-based autopsy study
AbstractObjectivesThe study was conducted to test the hypothesis that the prevalence of coronary atherosclerosis is greater among diabetic than among nondiabetic individuals and is similar for diabetic individuals without clinical coronary artery disease (CAD) and nondiabetics with clinical CAD.BackgroundPersons with diabetes but without clinical CAD encounter cardiovascular mortality similar to nondiabetic individuals with clinical CAD. This excess mortality is not fully explained. We examined the association between diabetes and coronary atherosclerosis in a geographically defined autopsied population, while capitalizing on the autopsy rate and medical record linkage system available via the Rochester Epidemiology Project, which allows rigorous ascertainment of coronary atherosclerosis, clinical CAD, and diabetes.MethodsUsing two measures, namely a global coronary score and high-grade stenoses, the prevalence of atherosclerosis was analyzed in a cohort of autopsied residents of Rochester, Minnesota, age 30 years or older at death, while stratifying on diabetes, clinical CAD diagnosis, age, and gender.ResultsIn this cohort, diabetes was associated with a higher prevalence of atherosclerosis. Among diabetic decedents without clinical CAD, almost three-fourths had high-grade coronary atherosclerosis and more than half had multivessel disease. Without diabetes, women had less atherosclerosis than men, but this female advantage was lost with diabetes. Among those without clinical CAD, diabetes was associated with a global coronary disease burden and a prevalence of high-grade atherosclerosis similar to that observed among nondiabetic subjects with clinical CAD.ConclusionsThese findings provide mechanistic insights into the excess risk of clinical CAD among diabetic individuals, thereby supporting the need for aggressive prevention of atherosclerosis in all diabetic individuals, irrespective of clinical CAD symptoms
Fifteen essential science advances needed for effective restoration of the world's forest landscapes
There has never been a more pressing and opportune time for science and practice to collaborate towards restoration of the world's forests. Multiple uncertainties remain for achieving successful, long-term forest landscape restoration (FLR). In this article, we use expert knowledge and literature review to identify knowledge gaps that need closing to advance restoration practice, as an introduction to a landmark theme issue on FLR and the UN Decade on Ecosystem Restoration. Aligned with an Adaptive Management Cycle for FLR, we identify 15 essential science advances required to facilitate FLR success for nature and people. They highlight that the greatest science challenges lie in the conceptualization, planning and assessment stages of restoration, which require an evidence base for why, where and how to restore, at realistic scales. FLR and underlying sciences are complex, requiring spatially explicit approaches across disciplines and sectors, considering multiple objectives, drivers and trade-offs critical for decision-making and financing. The developing tropics are a priority region, where scientists must work with stakeholders across the Adaptive Management Cycle. Clearly communicated scientific evidence for action at the outset of restoration planning will enable donors, decision makers and implementers to develop informed objectives, realistic targets and processes for accountability. This article paves the way for 19 further articles in this theme issue, with author contributions from across the world. This introduction article is part of the theme issue ‘Understanding forest landscape restoration: reinforcing scientific foundations for the UN Decade on Ecosystem Restoration’
A simple algorithm for quantifying DNA methylation levels on multiple independent CpG sites in bisulfite genomic sequencing electropherograms
DNA methylation at cytosines is a widely studied epigenetic modification. Methylation is commonly detected using bisulfite modification of DNA followed by PCR and additional techniques such as restriction digestion or sequencing. These additional techniques are either laborious, require specialized equipment, or are not quantitative. Here we describe a simple algorithm that yields quantitative results from analysis of conventional four-dye-trace sequencing. We call this method Mquant and we compare it with the established laboratory method of combined bisulfite restriction assay (COBRA). This analysis of sequencing electropherograms provides a simple, easily applied method to quantify DNA methylation at specific CpG sites
Global dominance of lianas over trees is driven by forest disturbance, climate and topography
Growing evidence suggests that liana competition with trees is threatening the global carbon sink by slowing forest recovery from disturbance. Emerging theory based on local and regional evidence further proposes that the competitive success of lianas over trees is driven by interactions between forest disturbance and climate. We present a first global assessment of liana–tree relative performance in response to forest disturbance and climate drivers, using an unprecedented dataset. We analysed 651 samples, worth 26,538 lianas and 82,802 trees, from 556 unique locations worldwide, extracted from 83 publications. Results show that lianas outperform trees (increasing liana-to-tree ratio) when forests are disturbed, under warmer temperatures and lower precipitations, and towards tropical lowlands. We also found that disturbed forests experiencing climate favourable to lianas can be a critical factor hindering forest recovery, as chronosequence data indicate that the liana dominance over trees can persist for decades following disturbances, especially when mean annual temperature is ≥ 23.4°C, precipitation is ≤ 1614 mm and climatic water deficit is ≥ -829 mm. These findings critically emphasise that degraded tropical forests with environmental conditions favouring lianas are the most vulnerable to stalled succession and hence also the highest priority for management attention, with important implications for the global carbon sink
Genomics-enabled sensor platform for rapid detection of viruses related to disease outbreak.
Bioweapons and emerging infectious diseases pose growing threats to our national security. Both natural disease outbreak and outbreaks due to a bioterrorist attack are a challenge to detect, taking days after the outbreak to identify since most outbreaks are only recognized through reportable diseases by health departments and reports of unusual diseases by clinicians. In recent decades, arthropod-borne viruses (arboviruses) have emerged as some of the most significant threats to human health. They emerge, often unexpectedly, from cryptic transmission foci causing localized outbreaks that can rapidly spread to multiple continents due to increased human travel and trade. Currently, diagnosis of acute infections requires amplification of viral nucleic acids, which can be costly, highly specific, technically challenging and time consuming. No diagnostic devices suitable for use at the bedside or in an outbreak setting currently exist. The original goals of this project were to 1) develop two highly sensitive and specific diagnostic assays for detecting RNA from a wide range of arboviruses; one based on an electrochemical approach and the other a fluorescent based assay and 2) develop prototype microfluidic diagnostic platforms for preclinical and field testing that utilize the assays developed in goal 1. We generated and characterized suitable primers for West Nile Virus RNA detection. Both optical and electrochemical transduction technologies were developed for DNA-RNA hybridization detection and were implemented in microfluidic diagnostic sensing platforms that were developed in this project
Neural Basis of Self and Other Representation in Autism: An fMRI Study of Self-Face Recognition
Autism is a developmental disorder characterized by decreased interest and engagement in social interactions and by enhanced self-focus. While previous theoretical approaches to understanding autism have emphasized social impairments and altered interpersonal interactions, there is a recent shift towards understanding the nature of the representation of the self in individuals with autism spectrum disorders (ASD). Still, the neural mechanisms subserving self-representations in ASD are relatively unexplored.We used event-related fMRI to investigate brain responsiveness to images of the subjects' own face and to faces of others. Children with ASD and typically developing (TD) children viewed randomly presented digital morphs between their own face and a gender-matched other face, and made "self/other" judgments. Both groups of children activated a right premotor/prefrontal system when identifying images containing a greater percentage of the self face. However, while TD children showed activation of this system during both self- and other-processing, children with ASD only recruited this system while viewing images containing mostly their own face.This functional dissociation between the representation of self versus others points to a potential neural substrate for the characteristic self-focus and decreased social understanding exhibited by these individuals, and suggests that individuals with ASD lack the shared neural representations for self and others that TD children and adults possess and may use to understand others
Impact of Pre-adapted HIV Transmission
Human Leukocyte Antigen class I (HLA) restricted CD8+ T lymphocyte (CTL) responses are critical to HIV-1 control. Although HIV can evade these responses, the longer-term impact of viral escape mutants remains unclear, since these variants can also reduce intrinsic viral fitness. To address this question, we here develop a metric to determine the degree of HIV adaptation to an HLA profile. We demonstrate that transmission of viruses pre-adapted to the HLA molecules expressed in the recipient is associated with impaired immunogenicity, elevated viral load and accelerated CD4 decline. Furthermore, the extent of pre-adaptation among circulating viruses explains much of the variation in outcomes attributed to expression of certain HLA alleles. Thus, viral pre-adaptation exploits “holes” in the immune response. Accounting for these holes may be critical for vaccine strategies seeking to elicit functional responses from viral variants, and to HIV cure strategies requiring broad CTL responses to achieve successful eradication of HIV reservoirs
Significant benefits of AIP testing and clinical screening in familial isolated and young-onset pituitary tumors
Context
Germline mutations in the aryl hydrocarbon receptor-interacting protein (AIP) gene are responsible for a subset of familial isolated pituitary adenoma (FIPA) cases and sporadic pituitary neuroendocrine tumors (PitNETs).
Objective
To compare prospectively diagnosed AIP mutation-positive (AIPmut) PitNET patients with clinically presenting patients and to compare the clinical characteristics of AIPmut and AIPneg PitNET patients.
Design
12-year prospective, observational study.
Participants & Setting
We studied probands and family members of FIPA kindreds and sporadic patients with disease onset ≤18 years or macroadenomas with onset ≤30 years (n = 1477). This was a collaborative study conducted at referral centers for pituitary diseases.
Interventions & Outcome
AIP testing and clinical screening for pituitary disease. Comparison of characteristics of prospectively diagnosed (n = 22) vs clinically presenting AIPmut PitNET patients (n = 145), and AIPmut (n = 167) vs AIPneg PitNET patients (n = 1310).
Results
Prospectively diagnosed AIPmut PitNET patients had smaller lesions with less suprasellar extension or cavernous sinus invasion and required fewer treatments with fewer operations and no radiotherapy compared with clinically presenting cases; there were fewer cases with active disease and hypopituitarism at last follow-up. When comparing AIPmut and AIPneg cases, AIPmut patients were more often males, younger, more often had GH excess, pituitary apoplexy, suprasellar extension, and more patients required multimodal therapy, including radiotherapy. AIPmut patients (n = 136) with GH excess were taller than AIPneg counterparts (n = 650).
Conclusions
Prospectively diagnosed AIPmut patients show better outcomes than clinically presenting cases, demonstrating the benefits of genetic and clinical screening. AIP-related pituitary disease has a wide spectrum ranging from aggressively growing lesions to stable or indolent disease course
- …