3 research outputs found

    A mouse model featuring tissue-specific deletion of p53 and Brca1 gives rise to mammary tumors with genomic and transcriptomic similarities to human basal-like breast cancer

    Get PDF
    Purpose and methods: In human basal-like breast cancer, mutations and deletions in TP53 and BRCA1 are frequent oncogenic events. Thus, we interbred mice expressing the CRE-recombinase with mice harboring loxP sites at TP53 and BRCA1 (K14-Cre; p53 f/f Brca1 f/f ) to test the hypothesis that tissue-specific deletion of TP53 and BRCA1 would give rise to tumors reflective of human basal-like breast cancer. Results: In support of our hypothesis, these transgenic mice developed tumors that express basal-like cytokeratins and demonstrated intrinsic gene expression features similar to human basal-like tumors. Array comparative genomic hybridization revealed a striking conservation of copy number alterations between the K14-Cre; p53 f/f Brca1 f/f mouse model and human basal-like breast cancer. Conserved events included MYC amplification, KRAS amplification, and RB1 loss. Microarray analysis demonstrated that these DNA copy number events also led to corresponding changes in signatures of pathway activation including high proliferation due to RB1 loss. K14-Cre; p53 f/f Brca1 f/f also matched human basal-like breast cancer for a propensity to have immune cell infiltrates. Given the long latency of K14-Cre; p53 f/f Brca1 f/f tumors (~ 250 days), we created tumor syngeneic transplant lines, as well as in vitro cell lines, which were tested for sensitivity to carboplatin and paclitaxel. These therapies invoked acute regression, extended overall survival, and resulted in gene expression signatures of an anti-tumor immune response. Conclusion: These findings demonstrate that this model is a valuable preclinical resource for the study of human basal-like breast cancer

    c-Myc and Her2 cooperate to drive a stem-like phenotype with poor prognosis in breast cancer

    No full text
    The HER2 (ERBB2) and MYC genes are commonly amplified in breast cancer, yet little is known about their molecular and clinical interaction. Using a novel chimeric mammary transgenic approach and in vitro models, we demonstrate markedly increased self-renewal and tumour-propagating capability of cells transformed with Her2 and c-Myc. Coexpression of both oncoproteins in cultured cells led to the activation of a c-Myc transcriptional signature and acquisition of a self-renewing phenotype independent of an epithelial–mesenchymal transition programme or regulation of conventional cancer stem cell markers. Instead, Her2 and c-Myc cooperated to induce the expression of lipoprotein lipase, which was required for proliferation and self-renewal in vitro. HER2 and MYC were frequently coamplified in breast cancer, associated with aggressive clinical behaviour and poor outcome. Lastly, we show that in HER2+ breast cancer patients receiving adjuvant chemotherapy (but not targeted anti-Her2 therapy), MYC amplification is associated with a poor outcome. These findings demonstrate the importance of molecular and cellular context in oncogenic transformation and acquisition of a malignant stem-like phenotype and have diagnostic and therapeutic consequences for the clinical management of HER2+ breast cancer
    corecore