73 research outputs found

    Comparison of different in situ hybridization techniques for the detection of various RNA and DNA viruses

    Get PDF
    In situ hybridization (ISH) is a technique to determine potential correlations between viruses and lesions. The aim of the study was to compare ISH techniques for the detection of various viruses in different tissues. Tested RNA viruses include atypical porcine pestivirus (APPV) in the cerebellum of pigs, equine and bovine hepacivirus (EqHV, BovHepV) in the liver of horses and cattle, respectively, and Schmallenberg virus (SBV) in the cerebrum of goats. Examined DNA viruses comprise canine bocavirus 2 (CBoV-2) in the intestine of dogs, porcine bocavirus (PBoV) in the spinal cord of pigs and porcine circovirus 2 (PCV-2) in cerebrum, lymph node, and lung of pigs. ISH with self-designed digoxigenin-labelled RNA probe

    Effect of adaptation to phenol on biodegradation of monosubstituted phenols by aquatic microbial communities.

    Get PDF
    The adaptation of a mixed aquatic microbial community to phenol was examined in microcosms receiving phenol as a sole carbon source. Extended exposure (adaptation) to phenol resulted in adaptation of the microbial community to the structurally related aromatic compounds m-cresol, m-aminophenol, and p-chlorophenol. The increased biodegradation potential of the phenol-adapted microbial community was accompanied by a concurrent increase in the number of microorganisms able to degrade the three test compounds. Thus, adaptation to the three test chemicals was likely a growth-related result of extended exposure to phenol. The results indicate that adaptation to a single chemical may increase the assimilative capacity of an aquatic environment for other related chemicals even in the absence of adaptation-inducing levels of those materials

    Measurement of aquatic biodegradation rates by determining heterotrophic uptake of radiolabeled pollutants.

    Get PDF
    The heterotrophic uptake technique was modified to provide a rapid and simple technique for estimating the rates of biodegradation of organic pollutants under environmental conditions. The methodology is based on an evaluation of uptake into cells and subsequent respiration of radiolabeled organic substrates in short-term experiments. The resulting data can be used to calculate either turnover times or, if multiple concentrations of substrate are used, kinetic parameters. The procedure was applied to assess the biodegradation rates of m-cresol, chlorobenzene, nitrilotriacetic acid, and 1,2,4-trichlorobenzene in fresh, brackish, and marine water samples from the coastal areas of North Carolina. Saturation kinetics for uptake were obtained with each of the compounds tested. Rates of metabolism were shown to be dependent on sample location and time of year

    Influence of spatial and temporal variations on organic pollutant biodegradation rates in an estuarine environment.

    Get PDF
    The influence of spatial and temporal environmental variations on rates of organic pollutant biodegradation were assessed by using heterotrophic uptake kinetics. These studies were conducted at three sites, representing the gradient from freshwater to estuarine to marine systems. Of the compounds tested, total uptake Vmax rates decreased in the order of nitrilotriacetic acid, m-cresol, chlorobenzene, and 1,2,4-trichlorobenzene. In general, the freshwater site exhibited the highest uptake rates, with somewhat lower rates at the estuarine site. Rates at the marine site were much lower than at the other sites, except during the winter. Metabolic rates at both the freshwater and estuarine areas were significantly decreased during periods of low water temperature. Rates at the marine site were relatively uniform throughout the year. Linear regression analysis was used to compare m-cresol biodegradation rates to characteristics of the microbial community, which included direct microscopic counts, CFU counts, and cellular incorporation of amino acids. The observed rates did not consistently correlate well with any of the measured characteristics of the microbial community

    Ring Hydroxylation of p

    No full text

    Adaptation to and biodegradation of xenobiotic compounds by microbial communities from a pristine aquifer.

    Get PDF
    The ability of subsurface microbial communities to adapt to the biodegradation of xenobiotic compounds was examined in aquifer solids samples from a pristine aquifer. An increase in the rates of mineralization of radiolabeled substrates with exposure was used as an indication of adaptation. For some compounds, such as chlorobenzene and 1,2,4-trichlorobenzene, slight mineralization was observed but no adaptation was apparent during incubations of over 8 months. Other compounds demonstrated three patterns of response. For m-cresol, m-aminophenol, and aniline intermediate rates of biodegradation and a linear increase in the percent mineralized with time were observed. Phenol, p-chlorophenol, and ethylene dibromide were rapidly metabolized initially, with a nonlinear increase in the percent mineralized with time, indicating that the community was already adapted to the biodegradation of these compounds. Only p-nitrophenol demonstrated a typical adaptation response. In different samples of soil from the same layer in the aquifer, the adaptation period to p-nitrophenol varied from a few days to as long as 6 weeks. In most cases the concentration of xenobiotic added, over the range from a few nanograms to micrograms per gram, made no difference in the response. Most-probable-number counts demonstrated that adaptation is accompanied by an increase in specific degrader numbers. This study has shown that diverse patterns of response occur in the subsurface microbial community
    • 

    corecore