564 research outputs found

    Critical point for the CAF-F phase transition at charge neutrality in bilayer graphene

    Full text link
    We report on magneto-transport measurements up to 30 T performed on a bilayer graphene Hall bar, enclosed by two thin hexagonal boron nitride flakes. Our high mobility sample exhibits an insulating state at neutrality point which evolves into a metallic phase when a strong in-plane field is applied, as expected for a transition from a canted antiferromagnetic to a ferromagnetic spin ordered phase. For the first time we individuate a temperature-independent crossing in the four-terminal resistance as a function of the total magnetic field, corresponding to the critical point of the transition. We show that the critical field scales linearly with the perpendicular component of the field, as expected from the underlying competition between the Zeeman energy and interaction-induced anisotropies. A clear scaling of the resistance is also found and an universal behavior is proposed in the vicinity of the transition

    Anisotropic and strong negative magneto-resistance in the three-dimensional topological insulator Bi2Se3

    Get PDF
    We report on high-field angle-dependent magneto-transport measurements on epitaxial thin films of Bi2Se3, a three-dimensional topological insulator. At low temperature, we observe quantum oscillations that demonstrate the simultaneous presence of bulk and surface carriers. The magneto- resistance of Bi2Se3 is found to be highly anisotropic. In the presence of a parallel electric and magnetic field, we observe a strong negative longitudinal magneto-resistance that has been consid- ered as a smoking-gun for the presence of chiral fermions in a certain class of semi-metals due to the so-called axial anomaly. Its observation in a three-dimensional topological insulator implies that the axial anomaly may be in fact a far more generic phenomenon than originally thought.Comment: 6 pages, 4 figure

    Syndromes associated with mitochondrial DNA depletion

    Get PDF
    This is an Open Access article distributed under the terms of the Creative Commons Attribution License.Mitochondrial dysfunction accounts for a large group of inherited metabolic disorders most of which are due to a dysfunctional mitochondrial respiratory chain (MRC) and, consequently, deficient energy production. MRC function depends on the coordinated expression of both nuclear (nDNA) and mitochondrial (mtDNA) genomes. Thus, mitochondrial diseases can be caused by genetic defects in either the mitochondrial or the nuclear genome, or in the cross-talk between the two. This impaired cross-talk gives rise to so-called nuclear-mitochondrial intergenomic communication disorders, which result in loss or instability of the mitochondrial genome and, in turn, impaired maintenance of qualitative and quantitative mtDNA integrity. In children, most MRC disorders are associated with nuclear gene defects rather than alterations in the mtDNA itself.The mitochondrial DNA depletion syndromes (MDSs) are a clinically heterogeneous group of disorders with an autosomal recessive pattern of transmission that have onset in infancy or early childhood and are characterized by a reduced number of copies of mtDNA in affected tissues and organs. The MDSs can be divided into least four clinical presentations: hepatocerebral, myopathic, encephalomyopathic and neurogastrointestinal. The focus of this review is to offer an overview of these syndromes, listing the clinical phenotypes, together with their relative frequency, mutational spectrum, and possible insights for improving diagnostic strategies.CN was supported by the Portuguese Foundation for Science and Technology (SFRH/BD/45247/2008). LSA was supported by the Portuguese Foundation for Science and Technology (FCT C2008/INSA/P4)

    Deterministic direct growth of WS2 on CVD graphene arrays

    Get PDF
    The combination of the exciting properties of graphene with those of monolayer tungsten disulfide (WS2) makes this heterostack of great interest for electronic, optoelectronic and spintronic applications. The scalable synthesis of graphene/WS2 heterostructures on technologically attractive substrates like SiO2 would greatly facilitate the implementation of novel two-dimensional (2D) devices. In this work, we report the direct growth of monolayer WS2 via chemical vapor deposition (CVD) on single-crystal graphene arrays on SiO2. Remarkably, spectroscopic and microscopic characterization reveals that WS2 grows only on top of the graphene crystals so that the vertical heterostack is selectively obtained in a bottom-up fashion. Spectroscopic characterization indicates that, after WS2 synthesis, graphene undergoes compressive strain and hole doping. Tailored experiments show that such hole doping is caused by the modification of the SiO2 stoichiometry at the graphene/SiO2 interface during the WS2 growth. Electrical transport measurements reveal that the heterostructure behaves like an electron-blocking layer at large positive gate voltage, which makes it a suitable candidate for the development of unipolar optoelectronic components

    disorder and de coherence in graphene probed by low temperature magneto transport weak localization and weak antilocalization

    Get PDF
    We studied weak localization (WL) and and weak antilocalization (WAL) in a eight-contacts Hall bar made of exfoliated monolayer graphene on Si-SiO2, by means of magneto-transport experiments, at temperatures between 0.3 K and 15 K. At low carrier density (n ≊ 7 × 1011 cm−2) we observed a transition from WL to WAL driven by the increasing of the magnetic field, while at high carrier density (n ≊ 2 × 1012 cm−2) only WL was observable. We analyzed the magnetic field driven WL-WAL transition and we evaluated the temperature dependence of the de-coherence parameters using an alternative method compared to previous studies. The values we obtained were corroborated by a root-mean-square analysis of the amplitude of highly-reproducible universal conductance fluctuations

    High-speed double layer graphene electro-absorption modulator on SOI waveguide

    Get PDF
    We report on a C-band double layer graphene electro-absorption modulator on a passive SOI platform showing 29GHz 3dB-bandwith and NRZ eye-diagrams extinction ratios ranging from 1.7 dB at 10 Gb/s to 1.3 dB at 50 Gb/s. Such high modulation speed is achieved thanks to the quality of the CVD pre-patterned single crystal growth and transfer on wafer method that permitted the integration of high-quality scalable graphene and low contact resistance. By demonstrating this high-speed CVD graphene EAM modulator integrated on Si photonics and the scalable approach, we are confident that graphene can satisfy the main requirements to be a competitive technology for photonics

    Synthesis of Large-Scale Monolayer 1T′-MoTe2and Its Stabilization via Scalable hBN Encapsulation

    Get PDF
    Out of the different structural phases of molybdenum ditelluride (MoTe2), the distorted octahedral 1T′ possesses great interest for fundamental physics and is a promising candidate for the implementation of innovative devices such as topological transistors. Indeed, 1T′-MoTe2 is a semimetal with superconductivity, which has been predicted to be a Weyl semimetal and a quantum spin Hall insulator in bulk and monolayer form, respectively. Large instability of monolayer 1T′-MoTe2 in environmental conditions, however, has made its investigation extremely challenging so far. In this work, we demonstrate homogeneous growth of large single-crystal (up to 500 μm) monolayer 1T′-MoTe2 via chemical vapor deposition (CVD) and its stabilization in air with a scalable encapsulation approach. The encapsulant is obtained by electrochemically delaminating CVD hexagonal boron nitride (hBN) from copper foil, and it is applied on the freshly grown 1T′-MoTe2 via a top-down dry lamination step. The structural and electrical properties of encapsulated 1T′-MoTe2 have been monitored over several months to assess the degree of degradation of the material. We find that when encapsulated with hBN, the lifetime of monolayer 1T′-MoTe2 successfully increases from a few minutes to more than a month. Furthermore, the encapsulated monolayer can be subjected to transfer, device processing, and heating and cooling cycles without degradation of its properties. The potential of this scalable heterostack is confirmed by the observation of signatures of low-temperature phase transition in monolayer 1T′-MoTe2 by both Raman spectroscopy and electrical measurements. The growth and encapsulation methods reported in this work can be employed for further fundamental studies of this enticing material as well as facilitate the technological development of monolayer 1T′-MoTe2

    Recurrent versus first cervical artery dissection - a retrospective study of clinical and vascular characteristics

    Get PDF
    Background and purpose Most recurrent cervical artery dissection (CeAD) events occur shortly after the acute first CeAD. This study compared the characteristics of recurrent and first CeAD events and searched for associations between subsequent events of an individual person. Methods Cervical artery dissection patients with a new CeAD event occurring during a 3-6 month follow-up were retrospectively selected in seven specialized stroke centers. Clinical and vascular characteristics of the initial and the recurrent CeADs were compared. Results The study sample included 76 patients. Recurrent CeADs were occlusive in one (1.3%) patient, caused cerebral ischaemia in 13 (17.1%) and were asymptomatic in 39 (51.3%) patients, compared to 29 (38.2%) occlusive, 42 (55.3%) ischaemic and no asymptomatic first CeAD events. In 52 (68.4%) patients, recurrent dissections affected both internal carotid arteries or both vertebral arteries, whilst 24 (31.6%) patients had subsequent dissections in both types of artery. Twelve (28.6%) of 42 patients with an ischaemic first dissection had ischaemic symptoms due to the recurrent CeADs, too. However, only one (1.3%) of 34 patients with a non-ischaemic first CeAD suffered ischaemia upon recurrence. Conclusion Recurrent CeAD typically affects the same site of artery. It causes ischaemic events less often than the first CeAD. The risk that patients who presented with solely non-ischaemic symptoms of a first CeAD will have ischaemic symptoms in the case of a recurrent CeAD seems very small.Peer reviewe

    Electron-Hole Tunneling Revealed by Quantum Oscillations in the Nodal-Line Semimetal HfSiS

    Get PDF
    We report a study of quantum oscillations in the high-field magnetoresistance of the nodal-line semimetal HfSiS. In the presence of a magnetic field up to 31 T parallel to the c axis, we observe quantum oscillations originating both from orbits of individual electron and hole pockets, and from magnetic breakdown between these pockets. In particular, we reveal a breakdown orbit enclosing one electron and one hole pocket in the form of a “figure of eight,” which is a manifestation of Klein tunneling in momentum space, although in a regime of partial transmission due to the finite separation between the pockets. The observed very strong dependence of the oscillation amplitude on the field angle and the cyclotron masses of the orbits are in agreement with the theoretical predictions for this novel tunneling phenomenon
    corecore