3 research outputs found

    Potential of Treated Dentin Matrix Xenograft for Dentin-Pulp Tissue Engineering

    No full text
    Introduction: This study aims to develop and characterize the regenerative potential of an atelopeptidized treated dentin matrix xenograft using in vitro and in vivo models. Methods: Freshly extracted bovine dentin was pulverized into 250- to 500-mu m particles and demineralized with 17% EDTA for 1, 7, and 13 days. The samples were atelopeptidized with pepsin. The degree of demineralization and the effect of atelopeptidization were assessed using field emission scanning electron microscopy combined with energy-dispersive X-ray spectroscopy and Fourier transform infrared spectroscopy, respectively. The expression of dentin matrix acidic phosphoprotein 1, dentin sialophosphoprotein, and osteopontin was evaluated in dental pulp stem cells using quantitative real-time polymerase chain reaction. The samples were then implanted intramuscularly in rats for 30 days, and the inflammatory cells were quantified histologically. Results: Field emission scanning electron microscopy combined with energy-dispersive X-ray spectroscopy revealed an exposed tubular structure of dentin after 1 and 7 days of demineralization. Fourier transform infrared spectroscopy confirmed the absence of amide peaks at 1260 to 1640/cm after atelopeptidization. The dental pulp stem cell expression of dentin matrix acidic phosphoprotein 1 and dentin sialophosphoprotein increased in all compared with the untreated control group (P < .05). The maximum expression rates were observed for the 1-day demineralized and atelopeptidized group. The 1-day demineralized group elicited the highest inflammatory response compared with the 7- or 13-day demineralized groups (P < .001). Atelopeptidization significantly decreased the inflammatory response only in the 1-day demineralized dentin group (P < .05). Conclusions: Atelopeptidization of 1-day demineralized dentin xenograft preserved the collagen structure, minimized the immune reaction, and provided sufficient regenerative potential

    Pulp ECM-derived macroporous scaffolds for stimulation of dental-pulp regeneration process

    No full text
    Objective. Recent studies suggest xenogeneic extracellular matrices as potential regenerative tools in dental pulp regeneration. This study aimed to fabricate and characterize a novel three-dimensional macroporous pulp-derived scaffold that enables the attachment, penetration, proliferation and differentiation of mesenchymal stem cells. Method. Bovine pulp was decellularized and characterized with histological and DNA content methods. This scaffold was prepared using finely milled lyophilized decellularized pulp extracellular matrix (ECM) digested with pepsin. Three different concentrations of ECM (1.50, 2.25 and 3.00 mg/ml) were freeze-dried and were tested with/without chemical crosslinking. The specimens were subjected to physicochemical characterization, cell viability and quantitative real time polymerase chain reaction assessments with human bone marrow mesenchymal stem cells (hBMMSCs). All scaffolds were subcutaneously implanted in rats for two weeks and histological and immunostaining analyses were performed. Results. Histological and DNA analysis confirmed complete decellularization. All samples demonstrated more than 97% porosity and 1.50 mg/ml scaffold demonstrated highest water absorption. The highest cell viability and proliferation of hBMMSCs was observed on the 3.00 mg/ml crosslinked scaffolds. The gene expression analysis showed a significant increase of dmp-1 and collagen-I on 3.00 mg/ml crosslinked scaffolds compared to the other scaffolds. Histological examination of subcutaneous implanted scaffolds revealed low immunological response, and enhanced angiogenesis in cross-linked samples compared to non-crosslinked samples. Significance. The three-dimensional macroporous pulp-derived injectable scaffold developed and characterized in this study displayed potential for regenerative therapy. While the scaffold biodegradability was decreased by crosslinking, the biocompatibility of post-crosslinked scaffold was significantly improved. (C) 2019 The Academy of Dental Materials. Published by Elsevier Inc. All rights reserved
    corecore