49 research outputs found
Effects of proton versus photon irradiation on (lymph) angiogenic, inflammatory, proliferative and anti-tumor immune responses in head and neck squamous cell carcinoma
International audienceThe proximity of organs at risk makes the treatment of head and neck squamous cell carcinoma (HNSCC) challenging by standard radiotherapy. The higher precision in tumor targeting of proton (P) therapy could promote it as the treatment of choice for HNSCC. Besides the physical advantage in dose deposition, few is known about the biological impact of P versus photons (X) in this setting. To investigate the comparative biological effects of P versus X radiation in HNSCC cells, we assessed the relative biological effectiveness (RBE), viability, proliferation and mRNA levels for genes involved in (lymph)angiogenesis, inflammation, proliferation and anti-tumor immunity. These parameters, particularly VEGF-C protein levels and regulations, were documented in freshly irradiated and/or long-term surviving cells receiving low/high-dose, single (SI)/multiple (MI) irradiations with P/X. The RBE was found to be 1.1 Key (lymph)angiogenesis and inflammation genes were downregulated (except for vegf-c) after P and upregulated after X irradiation in MI surviving cells, demonstrating a more favorable profile after P irradiation. Both irradiation types stimulated vegf-c promoter activity in a NF-κB-dependent transcriptional regulation manner, but at a lesser extent after P, as compared to X irradiation, which correlated with mRNA and protein levels. The cells surviving to MI by P or X generated tumors with higher volume, anarchic architecture and increased density of blood vessels. Increased lymphangiogenesis and a transcriptomic analysis in favor of a more aggressive phenotype were observed in tumors generated with X-irradiated cells. Increased detection of lymphatic vessels in relapsed tumors from patients receiving X radiotherapy was consistent with these findings. This study provides new data about the biological advantage of P, as compared to X irradiation. In addition to its physical advantage in dose deposition, P irradiation may help to improve treatment approaches for HNSCC
Structural Insights into the Inhibition of Cytosolic 5′-Nucleotidase II (cN-II) by Ribonucleoside 5′-Monophosphate Analogues
Cytosolic 5′-nucleotidase II (cN-II) regulates the intracellular nucleotide pools within the cell by catalyzing the dephosphorylation of 6-hydroxypurine nucleoside 5′-monophosphates. Beside this physiological function, high level of cN-II expression is correlated with abnormal patient outcome when treated with cytotoxic nucleoside analogues. To identify its specific role in the resistance phenomenon observed during cancer therapy, we screened a particular class of chemical compounds, namely ribonucleoside phosphonates to predict them as potential cN-II inhibitors. These compounds incorporate a chemically and enzymatically stable phosphorus-carbon linkage instead of a regular phosphoester bond. Amongst them, six compounds were predicted as better ligands than the natural substrate of cN-II, inosine 5′-monophosphate (IMP). The study of purine and pyrimidine containing analogues and the introduction of chemical modifications within the phosphonate chain has allowed us to define general rules governing the theoretical affinity of such ligands. The binding strength of these compounds was scrutinized in silico and explained by an impressive number of van der Waals contacts, highlighting the decisive role of three cN-II residues that are Phe 157, His 209 and Tyr 210. Docking predictions were confirmed by experimental measurements of the nucleotidase activity in the presence of the three best available phosphonate analogues. These compounds were shown to induce a total inhibition of the cN-II activity at 2 mM. Altogether, this study emphasizes the importance of the non-hydrolysable phosphonate bond in the design of new competitive cN-II inhibitors and the crucial hydrophobic stacking promoted by three protein residues
Microarray analysis of genes associated with cell surface NIS protein levels in breast cancer
<p>Abstract</p> <p>Background</p> <p>Na<sup>+</sup>/I<sup>- </sup>symporter (NIS)-mediated iodide uptake allows radioiodine therapy for thyroid cancer. NIS is also expressed in breast tumors, raising potential for radionuclide therapy of breast cancer. However, NIS expression in most breast cancers is low and may not be sufficient for radionuclide therapy. We aimed to identify biomarkers associated with NIS expression such that mechanisms underlying NIS modulation in human breast tumors may be elucidated.</p> <p>Methods</p> <p>Published oligonucleotide microarray data within the National Center for Biotechnology Information Gene Expression Omnibus database were analyzed to identify gene expression tightly correlated with NIS mRNA level among human breast tumors. NIS immunostaining was performed in a tissue microarray composed of 28 human breast tumors which had corresponding oligonucleotide microarray data available for each tumor such that gene expression associated <it>w</it>ith cell surface NIS protein level could be identified.</p> <p>Results and Discussion</p> <p>NIS mRNA levels do not vary among breast tumors or when compared to normal breast tissues when detected by Affymetrix oligonucleotide microarray platforms. Cell surface NIS protein levels are much more variable than their corresponding NIS mRNA levels. Despite a limited number of breast tumors examined, our analysis identified cysteinyl-tRNA synthetase as a biomarker that is highly associated with cell surface NIS protein levels in the ER-positive breast cancer subtype.</p> <p>Conclusions</p> <p>Further investigation on genes associated with cell surface NIS protein levels within each breast cancer molecular subtype may lead to novel targets for selectively increasing NIS expression/function in a subset of breast cancers patients.</p
Cellular pharmacology of multi- and duplex drugsconsisting of ethynylcytidine and 5-fluoro-2′-deoxyuridine
Prodrugs can have the advantage over parent drugs in increased activation and cellular uptake. The multidrug ETC-L-FdUrd and the duplex drug ETC-FdUrd are composed of two different monophosphate-nucleosides, 5-fluoro-2′deoxyuridine (FdUrd) and ethynylcytidine (ETC), coupled via a glycerolipid or phosphodiester, respectively. The aim of the study was to determine cytotoxicity levels and mode of drug cleavage. Moreover, we determined whether a liposomal formulation of ETC-L-FdUrd would improve cytotoxic activity and/or cleavage. Drug effects/cleavage were studied with standard radioactivity assays, HPLC and LC-MS/MS in FM3A/0 mammary cancer cells and their FdUrd resistant variants FM3A/TK−. ETC-FdUrd was active (IC50 of 2.2 and 79 nM) in FM3A/0 and TK− cells, respectively. ETC-L-FdUrd was less active (IC50: 7 nM in FM3A/0 vs 4500 nM in FM3A/TK−). Although the liposomal formulation was less active than ETC-L-FdUrd in FM3A/0 cells (IC50:19.3 nM), resistance due to thymidine kinase (TK) deficiency was greatly reduced. The prodrugs inhibited thymidylate synthase (TS) in FM3A/0 cells (80–90%), but to a lower extent in FM3A/TK− (10–50%). FdUMP was hardly detected in FM3A/TK− cells. Inhibition of the transporters and nucleotidases/phosphatases resulted in a reduction of cytotoxicity of ETC-FdUrd, indicating that this drug was cleaved outside the cells to the monophosphates, which was verified by the presence of FdUrd and ETC in the medium. ETC-L-FdUrd and the liposomal formulation were neither affected by transporter nor nucleotidase/phosphatase inhibition, indicating circumvention of active transporters. In vivo, ETC-FdUrd and ETC-L-FdURd were orally active. ETC nucleotides accumulated in both tumor and liver tissues. These formulations seem to be effective when a lipophilic linker is used combined with a liposomal formulation
Changes in lipid composition during sexual development of the malaria parasite Plasmodium falciparum
Synthèse et Activité antipaludique de nouveaux analogues d’acyclonucléotides
International audienc
Synthetic approaches to a mononucleotide prodrug of cytarabine.
Synthetic pathways to a mononucleotide prodrug of cytarabine (Ara-C) bearing S-pivaloyl-2-thioethyl (tBuSATE) groups, as biolabile phosphate protections, are reported. Using a common phosphoramidite approach, two different kinds of nucleoside protecting groups have been investigated. During this study, we obsd. an intermol. migration of the Boc protecting group in the course of the tert-butyldimethylsilyl ether cleavage using tetra-Bu ammonium fluorid
New series of acyclic nucleoside phosphonates as potent antimalarials
International audienc
Synthesis of acyclic nucleoside phosphonates as potent antimalarials
International audienc