38 research outputs found

    Fish evacuate smoothly respecting a social bubble

    Full text link
    Crowd movements are observed among different species and on different scales, from insects to mammals, as well as in non-cognitive systems, such as motile cells. When forced to escape through a narrow opening, most terrestrial animals behave like granular materials and clogging events decrease the efficiency of the evacuation. Here, we explore the evacuation behavior of macroscopic, aquatic agents, neon fish, and challenge their gregarious behavior by forcing the school through a constricted passage. Using a statistical analysis method developed for granular matter and applied to crowd evacuation, our results clearly show that, unlike crowds of people or herds of sheep, no clogging occurs at the bottleneck. The fish do not collide and wait for a minimum waiting time between two successive exits, while respecting a social distance. When the constriction becomes similar to or smaller than their social distance, the individual domains defined by this cognitive distance are deformed and fish density increases. We show that the current of escaping fish behaves like a set of deformable 2D-bubbles, their 2D domain, passing through a constriction. Schools of fish show that, by respecting social rules, a crowd of individuals can evacuate without clogging, even in an emergency situation.Comment: 7 pages, 4 figure

    Highly anisotropic g-factor of two-dimensional hole systems

    Full text link
    Coupling the spin degree of freedom to the anisotropic orbital motion of two-dimensional (2D) hole systems gives rise to a highly anisotropic Zeeman splitting with respect to different orientations of an in-plane magnetic field B relative to the crystal axes. This mechanism has no analogue in the bulk band structure. We obtain good, qualitative agreement between theory and experimental data, taken in GaAs 2D hole systems grown on (113) substrates, showing the anisotropic depopulation of the upper spin subband as a function of in-plane B.Comment: 4 pages, 3 figure

    Unconventional MBE Strategies from Computer Simulations for Optimized Growth Conditions

    Full text link
    We investigate the influence of step edge diffusion (SED) and desorption on Molecular Beam Epitaxy (MBE) using kinetic Monte-Carlo simulations of the solid-on-solid (SOS) model. Based on these investigations we propose two strategies to optimize MBE growth. The strategies are applicable in different growth regimes: During layer-by-layer growth one can exploit the presence of desorption in order to achieve smooth surfaces. By additional short high flux pulses of particles one can increase the growth rate and assist layer-by-layer growth. If, however, mounds are formed (non-layer-by-layer growth) the SED can be used to control size and shape of the three-dimensional structures. By controlled reduction of the flux with time we achieve a fast coarsening together with smooth step edges.Comment: 19 pages, 7 figures, submitted to Phys. Rev.

    Ripple Texturing of Suspended Graphene Atomic Membranes

    Full text link
    Graphene is the nature's thinnest elastic membrane, with exceptional mechanical and electrical properties. We report the direct observation and creation of one-dimensional (1D) and 2D periodic ripples in suspended graphene sheets, using spontaneously and thermally induced longitudinal strains on patterned substrates, with control over their orientations and wavelengths. We also provide the first measurement of graphene's thermal expansion coefficient, which is anomalously large and negative, ~ -7x10^-6 K^-1 at 300K. Our work enables novel strain-based engineering of graphene devices.Comment: 15 pages, 4 figure

    Periodic and Quasiperiodic Motion of an Elongated Microswimmer in Poiseuille Flow

    Full text link
    We study the dynamics of a prolate spheroidal microswimmer in Poiseuille flow for different flow geometries. When moving between two parallel plates or in a cylindrical microchannel, the swimmer performs either periodic swinging or periodic tumbling motion. Although the trajectories of spherical and elongated swimmers are qualitatively similar, the swinging and tumbling frequency strongly depends on the aspect ratio of the swimmer. In channels with reduced symmetry the swimmers perform quasiperiodic motion which we demonstrate explicitely for swimming in a channel with elliptical cross section

    Buckling of a compressed elastic membrane: a simple model

    No full text
    The buckling of a folded membrane submitted to a bi-axial compression is studied in the framework of the continuum non-linear elasticity theory. We show that the formation of the fold patterning can be quantitatively well described with a simple non-linear model. As a matter of fact, with this model, we recover the experimental phase diagram of a secondary buckling instability with a very good precision. In addition, depending on the anisotropy of the applied compressive stress, we find that the buckling coarsening dynamics can be described as a 1D spinodal decomposition (for a uni-axial stress) or as a 2D XY model (for an isotropic bi-axial stress) with an irrotational non-scalar order parameter. For an isotropic bi-axial stress, we indeed recover the famous coarsening exponent: n=1/4. This exponent has to be confirmed experimentally

    Rheology and dynamics of a deformable object in a microfluidic configuration: A numerical study

    No full text
    A dilute suspension is studied in a confined geometry with a 3D numerical simulation. The suspended element is a non-Brownian elastic dumbbell. The suspension is confined between two walls in a shear flow. The dynamics of the dumbbell as well as the associated rheology are presented. Despite its simplicity, the system exhibits generic microscopic behaviours of real deformable objects such as vesicles, biological cells or capsules like tumbling or vacillating-breathing. It also reproduces macroscopic behaviours like a shear thinning viscosity characteristic of complex fluids rheology. In addition, the model predicts a confinement law where the intrinsic viscosity varies as ∼c1/3\sim c^{1/3} for sufficiently strong confinements (c is the ratio of dumbbell size over the wall-to-wall distance). A transition from a tumbling regime towards a vacillating-breathing one is found. This mode is promoted further by confinement

    Buckling of a compressed elastic membrane: a simple model

    No full text

    New confinement effects on the viscosity of suspensions

    No full text
    We present rheological experiments of confined suspensions at moderate concentrations. The analysis is carried out in the framework of a previous study on particle suspensions (Davit Y. and Peyla P., EPL, 83 (2008) 64001) where simulations revealed the presence of unusual effects attributed to confinement, i.e. when the gap size (h) becomes closer to the particle size (d). Deviations from the usual viscosity trends were found. The present work investigates these features further and confirms the important role of the confinement. Extensions are made from the classical approach to the case of confined suspensions where the importance of the reduced gap hd\frac{h}{d} is taken into account
    corecore