453 research outputs found

    Wave Function Engineering for Spectrally-Uncorrelated Biphotons in the Telecommunication Band based on a Machine-Learning Framework

    Full text link
    Indistinguishable single photons are key ingredient for a plethora of quantum information processing applications ranging from quantum communications to photonic quantum computing. A mainstream platform to produce indistinguishable single photons over a wide spectral range is based on biphoton generation through spontaneous parametric down-conversion (SPDC) in nonlinear crystals. The purity of the SPDC biphotons, however, is limited by their spectral correlations. Here, we present a design recipe, based on a machine-learning framework, for the engineering of biphoton joint spectrum amplitudes over a wide spectral range. By customizing the poling profile of the KTiOPO4_4 (KTP) crystal, we show, numerically, that spectral purities of 99.22%, 99.99%, and 99.82% can be achieved, respectively, in the 1310-nm, 1550-nm, and 1600-nm bands after applying a moderate 8-nm filter. The machine-learning framework thus enables the generation of near-indistinguishable single photons over the entire telecommunication band without resorting to KTP crystal's group-velocity-matching wavelength window near 1582 nm

    Grating formation in BGG31 glass by UV exposure

    Get PDF
    A three-dimensional index variation grating in bulk BGG31 glass written using neither hydrogen loading nor germanium doping is demonstrated. This material is useful for fabricating ion-exchanged waveguides, and its photosensitivity to ultraviolet (UV) radiation at 248nm has not been previously explored. Intensity measurements of the Bragg diffracted spots indicated a maximum index variation (Delta n) of similar to 4 x 10(-5)

    Gratings photowritten in ion-exchanged glass channel waveguides

    Get PDF
    Gratings are photowritten in ion-exchanged glass channel waveguides. The transmission of these waveguides shows a rejection dip of almost 20dB. The polarisation dependence of these waveguide gratings is measured and discussed

    Ion-exchanged waveguide add/drop filter

    Get PDF
    An add/drop filter is fabricated using ion-exchanged waveguides and photowritten Bragg gratings. The device exhibits 20 dB extinction ratios and 3 dB bandwidths of 0.4 nm (100 GHz)

    Buried Ion-Exchanged Glass Wavelengths: Burial-Depth Dependence on Waveguide Width

    Get PDF
    A detailed theoretical and experimental study of the depth dependence of buried ion-exchanged waveguides on waveguide width is reported. Modeling, which includes the effect of nonhomogeneous time-dependent electric field distribution, agrees well with our experiments showing that burial depth increases linearly with waveguide width. These results may be used in the proper design of integrated optical circuits that need waveguides of different widths at different sections, such as arrayed waveguide gratings

    Transillumination imaging through scattering media by use of photorefractive polymers

    Get PDF
    We demonstrate the use of a near-infrared-sensitive photorefractive polymer with high efficiency for imaging through scattering media, using an all-optical holographic time gate. Imaging through nine scattering mean free paths is performed at 800 nm with a mode-locked continuous-wave Ti:sapphire laser

    Holographic injection locking of a broad area laser diode via a photorefractive thin-film device

    Get PDF
    We demonstrate locking of a high power broad area laser diode to a single frequency using holographic feedback from a photorefractive polymer thin-film device for the first time. A four-wave mixing setup is used to generate feedback for the broad area diode at the wavelength of the single frequency source (Ti:Sapphire laser) while the spatial distribution adapts to the preferred profile of the broad area diode. The result is an injection-locked broad area diode emitting with a linewidth comparable to the Ti:Sapphire laser
    • …
    corecore