201 research outputs found
Recent advances in directional statistics
Mainstream statistical methodology is generally applicable to data observed
in Euclidean space. There are, however, numerous contexts of considerable
scientific interest in which the natural supports for the data under
consideration are Riemannian manifolds like the unit circle, torus, sphere and
their extensions. Typically, such data can be represented using one or more
directions, and directional statistics is the branch of statistics that deals
with their analysis. In this paper we provide a review of the many recent
developments in the field since the publication of Mardia and Jupp (1999),
still the most comprehensive text on directional statistics. Many of those
developments have been stimulated by interesting applications in fields as
diverse as astronomy, medicine, genetics, neurology, aeronautics, acoustics,
image analysis, text mining, environmetrics, and machine learning. We begin by
considering developments for the exploratory analysis of directional data
before progressing to distributional models, general approaches to inference,
hypothesis testing, regression, nonparametric curve estimation, methods for
dimension reduction, classification and clustering, and the modelling of time
series, spatial and spatio-temporal data. An overview of currently available
software for analysing directional data is also provided, and potential future
developments discussed.Comment: 61 page
Bayesian inference for the half-normal and half-t distributions
In this article we consider approaches to Bayesian inference for the half-normal and half-t distributions. We show that a generalized version of the normal-gamma distribution is conjugate to the half-normal likelihood and give the moments of this new distribution. The bias and coverage of the Bayesian posterior mean estimator of the halfnormal location parameter are compared with those of maximum likelihood based estimators. Inference for the half-t distribution is performed using Gibbs sampling and model comparison is carried out using Bayes factors. A real data example is presented which demonstrates the fitting of the half-normal and half-t models
BAYESIAN INFERENCE FOR THE HALF-NORMAL AND HALF-T DISTRIBUTIONS
In this article we consider approaches to Bayesian inference for the half-normal and half-t distributions. We show that a generalized version of the normal-gamma distribution is conjugate to the half-normal likelihood and give the moments of this new distribution. The bias and coverage of the Bayesian posterior mean estimator of the halfnormal location parameter are compared with those of maximum likelihood based estimators. Inference for the half-t distribution is performed using Gibbs sampling and model comparison is carried out using Bayes factors. A real data example is presented which demonstrates the fitting of the half-normal and half-t models.
Recommended from our members
Some contributions to the analysis of skew data on the line and circle
In the first part of this thesis we consider the skew-normal class of distributions on the line and its limiting general half-normal distribution. Inferential procedures based on the methods of moments and maximum likelihood are developed and their performance assessed using simulation. Data on the strength of glass fibre and the body fat of elite athletes are used to illustrate some of the inferential issues raised. The second part of the thesis is devoted to a consideration of the analysis of skew circular data. First, we derive the large-sample distribution of certain key circular statistics and show how this result provides a basis for inference for the corresponding population measures. Next, tests for circular reflective symmetry about an unknown central direction are investigated. A large-sample test and computer intensive variants of it are developed, and their operating characteristics explored both theoretically and empirically. Subsequently, we consider tests for circular reflective symmetry about a known or specified median axis. Two new procedures are developed for testing for symmetry about a known median axis against skew alternatives, and their operating characteristics compared in a simulation experiment with those of the circular analogues of three linear tests. On the basis of the results obtained from the latter, a simple testing strategy is identified. The performance of the tests against rotation alternatives is also investigated. Throughout, the use of the various tests of symmetry is illustrated using a wide range of circular data sets. Finally, we propose the wrapped skew-normal distribution on the circle as a potential model for circular data. The distribution’s fundamental properties are presented and inference based on the methods of moments and maximum likelihood is explored. Tests for limiting cases of the class are proposed, and a potential use of the distribution is illustrated in the mixture based modelling of data on bird migration
Recommended from our members
Sinh-arcsinh distributions
We introduce the sinh-arcsinh transformation and hence, by applying it to a generating distribution with no parameters other than location and scale, usually the normal, a new family of sinh-arcsinh distributions. This four-parameter family has symmetric and skewed members and allows for tailweights that are both heavier and lighter than those of the generating distribution. The central place of the normal distribution in this family affords likelihood ratio tests of normality that are superior to the state-of-the-art in normality testing because of the range of alternatives against which they are very powerful. Likelihood ratio tests of symmetry are also available and are very successful. Three-parameter symmetric and asymmetric subfamilies of the full family are also of interest. Heavy-tailed symmetric sinh-arcsinh distributions behave like Johnson SU distributions, while their light-tailed counterparts behave like sinh-normal distributions, the sinh-arcsinh family allowing a seamless transition between the two, via the normal, controlled by a single parameter. The sinh-arcsinh family is very tractable and many properties are explored. Likelihood inference is pursued, including an attractive reparameterization. Illustrative examples are given. A multivariate version is considered. Options and extensions are discussed
2変量角度データのための確率分布
Open House, ISM in Tachikawa, 2012.6.15統計数理研究所オープンハウス(立川)、H24.6.15ポスター発
Recommended from our members
Tractable circula densities from Fourier series
This article proposes an approach, based on infinite Fourier series, to constructing tractable densities for the bivariate circular analogues of copulas recently coined ‘circulas’. As examples of the general approach, we consider circula densities generated by various patterns of nonzero Fourier coefficients. The shape and sparsity of such arrangements are found to play a key role in determining the properties of the resultant models. The special cases of the circula densities we consider all have simple closed-form expressions involving no computationally demanding normalizing constants and display wide-ranging distributional shapes. A highly successful model identification tool and methods for parameter estimation and goodness-of-fit testing are provided for the circula densities themselves and the bivariate circular densities obtained from them using a marginal specification construction. The modelling capabilities of such bivariate circular densities are compared with those of five existing models in a numerical experiment, and their application illustrated in an analysis of wind directions
- …