12 research outputs found

    Habitat associations of freshwater sawfish (Pristis microdon) and Northern River sharks (Glyphis sp. C): including genetic analysis of P. microdon across northern Australia

    Get PDF
    This study investigated the ecology, morphology, habitat utilisation and population genetics of the vulnerable (Environment Protection and Biodiversity Conservation Act (EPBC) 1999) or critically endangered (IUCN) Freshwater Sawfish (Pristis microdon). It also examined the distribution and utility of satellite tags in tracking the movements of the endangered (EPBC Act 1999) or critically endangered (IUCN) Northern River Shark (Glyphis sp. C) in the Kimberley

    Freshwater Sawfish (Pristis microdon) movements and population demographics in the Fitzroy River, Western Australia and genetic analysis of P. microdon and Pristis zijsron

    Get PDF
    This report is a continuation of the study that was presented to the DEWHA in 2008 entitled: Whitty, J.M., Phillips, N.M., Morgan, D.L., Chaplin, J.A., Thorburn, D.C. & Peverell, S.C. (2008). Habitat associations of Freshwater Sawfish (Pristis microdon) and Northern River Shark (Glyphis sp. C): including genetic analysis of P. microdon across northern Australia. Centre for Fish & Fisheries Research, Murdoch University report to Australian Government, Department of the Environment, Water, Heritage and the Arts

    Critically endangered Pristis microdon (Elasmobranchii), as a host for the Indian parasitic copepod, Caligus furcisetifer Redkar, Rangnekar et Murti, 1949 (Siphonostomatoida): New records from northern Australia.

    No full text
    This paper presents the first records of the parasitic copepod Caligus furcisetifer Redkar, Rangnekar et Murti, 1949 beyond Indian waters, specifically, on the body surface and head of the critically endangered largetooth sawfish (commonly referred to as the freshwater sawfish in Australia), Pristis microdon Latham, 1794 (Elasmobranchii, Pristidae), in brackish tidal waters of the Fitzroy River in the Kimberley region of Western Australia and the Leichhardt River in the Gulf of Carpentaria in northern Queensland. This represents a geographic range extension of similar to 8000 km for this parasite. Further, it is only the second member of the genus Caligus to be found on an elasmobranch host in Western Australia and it is the first time this species has been reported from the Southern Hemisphere. Male biased dispersal of P microdon may be the vector in which the parasite has dispersed from India across to northern Australia, or vice versa. A decline in populations of the critically endangered P microdon (and possibly other pristid species) in these regions may lead to a concomitant decline in their parasite fauna

    Population genetic structure and genetic diversity of three critically endangered Pristis sawfishes in Australian waters

    No full text
    Northern Australia is considered to be one of the last strongholds for three critically endangered sawfishes, Pristis zijsron, Pristis clavata, and Pristis microdon, making these populations of global significance. Population structure and levels of genetic diversity were assessed for each species across northern Australia using a portion of the mitochondrial control region. Statistically significant genetic structure was detected in all three species, although it was higher in P. microdon (FST = 0.811; N = 149) than in either P. clavata (FST = 0.419; N = 73) or P. zijsron (FST = 0.202; N = 49), possibly due to a much higher and/or localized level of female philopatry in P. microdon. The overall levels of haplotype diversity in P. zijsron (h = 0.555), P. clavata (h = 0.489), and P. microdon (h = 0.650) were moderate, although it appears to be reduced in the assemblages of P. zijsron and P. clavata in the Gulf of Carpentaria (h = 0.342 and h = 0.083, respectively). Since female migration (replenishment) between regions is unlikely, conservation plans should strive to maintain current levels of diversity and abundances in the regional assemblages of each species

    New records of the River Shark Glyphis (Carcharhinidae) reported from Cape York Peninsula, northern Australia

    No full text
    The distribution of the river shark Glyphis in northern Australia is extended with new records of occurrence in the Gulf of Carpentaria and a reassessment of historical survey data from Cape York Peninsula. Nine new specimens of Glyphis sp. A were collected in 2005 from the Weipa region on the Queensland coast of the Gulf of Carpentaria. A re-examination of archival records from 1978-86 marine and estuarine fish surveys in the Gulf of Carpentaria and along the northern Queensland East Coast allowed a further nineteen Glyphis specimens to be identified. Combined this gives twenty-eight new records of Glyphis specimens from the coasts of Cape York Peninsula, Queensland. Common habitat characteristics for all captures were turbid, shallow, fast running tidal water in the upper reaches of coastal rivers. The substrate was generally muddy and the rivers lined with mangrove. In all surveys the representation of Glyphis was low, being less than 1% of the total shark captures historically and 0.002 sharks 50 m net hour-1 in Weipa 2005. The size range captured was 1000-1800 mm total length historically and 705-1200 mm total length from Weipa 2005, with none recorded as sexually mature. Diagnostic characteristics of the Weipa specimens, identified as Glyphis sp. A, were: lower jaw teeth protruding and "spear-like"; second dorsal fin greater than half the height of the first dorsal fin; the snout relatively short and fleshy in the lateral view; pectoral fin ventral surface black in colouration; the precaudal vertebral count between 118 and 123; and the total vertebral count between 204 and 209

    Ontogenetic depth partitioning by juvenile freshwater sawfish (Pristis microdon: Pristidae) in a riverine environment

    No full text
    The freshwater sawfish (Pristis microdon) is a critically endangered elasmobranch. Ontogenetic changes in the habitat use of juvenile P. microdon were studied using acoustic tracking in the Fitzroy River, Western Australia. Habitat partitioning was significant between 0+ (2007 year class) and larger 1+ (2006 year class) P. microdon. Smaller 0+ fish generally occupied shallower water (0.6 m. Significant differences in hourly depth use were also revealed. The depth that 1+ P. microdon occupied was significantly influenced by lunar phase with these animals utilising a shallower and narrower depth range during the full moon compared with the new moon. This was not observed in 0+ individuals. Habitat partitioning was likely to be related to predator avoidance, foraging behaviours, and temperature and/or light regimes. The occurrence of 1+ P. microdon in deeper water may also result from a need for greater depths in which to manoeuvre. The present study demonstrates the utility of acoustic telemetry in monitoring P. microdon in a riverine environment. These results demonstrate the need to consider the habitat requirements of different P. microdon cohorts in the strategic planning of natural resources and will aid in the development of management strategies for this species

    Utility of rostra in the identification of Australian sawfishes (Chondrichthyes: Pristidae)

    No full text
    Effective management of critically endangered sawfishes can be a difficult task, in part due to interspecies misidentification. Current methods for identifying sawfishes can be impractical as they are based on morphological features that are often unobservable. Further exploration is required to develop a more reliable means of identification. This study explored the utility of sawfish rostra in determining the species, size and sex of sawfishes, as rostra are commonly the only feature of a sawfish observed by fishers or present in public and private collections. A morphometric and meristic database consisting of over 1100 narrow sawfish (Anoxypristis cuspidata), dwarf sawfish (Pristis clavata), largetooth (or freshwater) sawfish (Pristis pristis; formerly Pristis microdon) and green sawfish (Pristis zijsron) rostra from Australian waters, was statistically analysed. Identification of sawfishes was found to be possible through the use of the variables: inter-tooth spacing, standard rostrum width/standard rostrum length, standard rostrum length/total rostrum length, rostrum tip width/standard rostrum length, and/or rostral tooth count range, although the distinguishing variables were species-dependent. The relationship between standard rostrum length and total length was also observed to vary substantially between most species. Models for estimating total length from standard rostrum length are provided. This study has provided a tool that can be used to identify accurately the species and size of sawfishes by their rostra, and therefore can assist in clarifying historical and contemporary sawfish records, nomenclature and distributions. A better understanding of these issues should allow sawfish conservation strategies to become more focused, and thus more effective
    corecore