1,567 research outputs found

    Spin-dependent resonant tunneling through semimetallic ErAs quantum wells

    Full text link
    Resonant tunneling through semimetallic ErAs quantum wells embedded in GaAs structures with AlAs barriers was recently found to exhibit an intriguing behavior in magnetic fields which is explained in terms of tunneling selection rules and the spin-polarized band structure including spin-orbit coupling.Comment: 4 pages, figures supplied as self-unpacking figures.uu, uses epsfig.sty to incorporate figures in preprin

    Doping effect on the evolution of the pairing symmetry in n-type superconductor near antiferromagnetic phase boundary

    Get PDF
    We present the investigation results of the in-plane \{rho}(T) resistivity tensor at the temperature range 0.4-40 K in magnetic fields up to 90kOe (H||c, J||ab) for electron-doped Nd{2-x}Ce{x}CuO{4+{\delta}} with different degree of disorder near antiferromagnetic - superconducting phase boundary. We have experimentally found that for optimally doped compound both the upper critical field slope and the critical temperature decrease with increasing of the disorder parameter (d-wave pairing) while in the case of the underdoped system the critical temperature remains constant and (dHc2/dT)|Tc increases with increasing of the disorder (s-wave pairing). These features suggest a possible implementation of the complex mixture state as the (s+id)-pairing.Comment: 9 pages, 2 figure

    The Construction and Parameters of Forward Hadron Calorimeter (FHCAL) at MPD/NICA

    Get PDF
    Forward hadron calorimeter (FHCAL) at MPD/NICA experimental setup is intended for the measurements of the geometry of heavy ions collisions, namely, the collision centrality and the orientation of the reaction plane. FHCAL consists of two identical arms placed at the left/right sides from the beam collision point. This is a modular lead- scintillator compensating calorimeter designed to measure the energy distribution of the projectile nuclei fragments (spectators) and forward going particles close to the beam rapidity

    Diffraction based Hanbury Brown and Twiss interferometry performed at a hard x-ray free-electron laser

    Full text link
    We demonstrate experimentally Hanbury Brown and Twiss (HBT) interferometry at a hard X-ray Free Electron Laser (XFEL) on a sample diffraction patterns. This is different from the traditional approach when HBT interferometry requires direct beam measurements in absence of the sample. HBT analysis was carried out on the Bragg peaks from the colloidal crystals measured at Linac Coherent Light Source (LCLS). We observed high degree (80%) spatial coherence of the full beam and the pulse duration of the monochromatized beam on the order of 11 fs that is significantly shorter than expected from the electron bunch measurements.Comment: 32 pages, 10 figures, 2 table

    Revealing three-dimensional structure of individual colloidal crystal grain by coherent x-ray diffractive imaging

    Get PDF
    We present results of a coherent x-ray diffractive imaging experiment performed on a single colloidal crystal grain. The full three-dimensional (3D) reciprocal space map measured by an azimuthal rotational scan contained several orders of Bragg reflections together with the coherent interference signal between them. Applying the iterative phase retrieval approach, the 3D structure of the crystal grain was reconstructed and positions of individual colloidal particles were resolved. As a result, an exact stacking sequence of hexagonal close-packed layers including planar and linear defects were identified.Comment: 8 pages, 5 figure

    Tests of the Electromagnetic Calorimeter for HADES Experiment at GSI

    Get PDF
    Measurements of mass spectra of dilepton pairs in the HADES experiment in the energy domain of SIS18 and SIS100 (FAIR, Darmstadt, Germany) are very important for studing the excitation function of the virtual photon radiation from dense nuclear matter. A detail study of this phenomenon in the intermediate mass region (0.14 < M < 0.6 GeV/c2) demands precise measurements of inclusive cross sections o

    Electron Spin Polarization in Resonant Interband Tunneling Devices

    Full text link
    We study spin-dependent interband resonant tunneling in double-barrier InAs/AlSb/ GaMnSb heterostructures. We demonstrate that these structures can be used as spin filters utilizing spin-selective tunneling of electrons through the light-hole resonant channel. High densities of the spin polarized electrons injected into bulk InAs make spin resonant tunneling devices a viable alternative for injecting spins into a semiconductor. Another striking feature of the proposed devices is the possibility of inducing additional resonant channels corresponding to the heavy holes. This can be implemented by saturating the in-plane magnetization in the quantum well.Comment: 11 pages, 4 eps figure
    corecore