262 research outputs found

    Multiple evolutionary trajectories for non-O157 Shiga toxigenic Escherichia coli

    Full text link
    AbstractBackgroundShiga toxigenic Escherichia coli (STEC) is an emerging global pathogen and remains a major cause of food-borne illness with more severe symptoms including hemorrhagic colitis and hemolytic-uremic syndrome. Since the characterization of the archetypal STEC serotype, E. coli O157:H7, more than 250 STEC serotypes have been defined. Many of these non-O157 STEC are associated with clinical cases of equal severity as O157. In this study, we utilize whole genome sequencing of 44 STEC strains from eight serogroups associated with human infection to establish their evolutionary relationships and contrast this with their virulence gene profiles and established typing methods.ResultsOur phylogenomic analysis delineated these STEC strains into seven distinct lineages, each with a characteristic repertoire of virulence factors. Some lineages included commensal or other E. coli pathotypes. Multiple independent acquisitions of the Locus for Enterocyte Effacement were identified, each associated with a distinct repertoire of effector genes. Lineages were inconsistent with O-antigen typing in several instances, consistent with lateral gene transfer within the O-antigen locus. STEC lineages could be defined by the conservation of clustered regularly interspaced short palindromic repeats (CRISPRs), however, no CRISPR profile could differentiate STEC from other E. coli strains. Six genomic regions (ranging from 500 bp - 10 kbp) were found to be conserved across all STEC in this dataset and may dictate interactions with Stx phage lysogeny.ConclusionsThe genomic analyses reported here present non-O157 STEC as a diverse group of pathogenic E. coli emerging from multiple lineages that independently acquired mobile genetic elements that promote pathogenesis.</jats:sec

    Policy challenges for the pediatric rheumatology workforce: Part III. the international situation

    Get PDF
    Survival dominates current pediatric global health priorities. Diseases of poverty largely contribute to overall mortality in children under 5 years of age. Infectious diseases and injuries account for 75% of cause-specific mortality among children ages 5-14 years. Twenty percent of the world's population lives in extreme poverty (income below US $1.25/day). Within this population, essential services and basic needs are not met, including clean water, sanitation, adequate nutrition, shelter, access to health care, medicines and education. In this context, musculoskeletal disease comprises 0.1% of all-cause mortality in children ages 5-14 years. Worldwide morbidity from musculoskeletal disease remains generally unknown in the pediatric age group. This epidemiologic data is not routinely surveyed by international agencies, including the World Health Organization. The prevalence of pediatric rheumatic diseases based on data from developed nations is in the range of 2,500 - 3,000 cases per million children. Developing countries' needs for musculoskeletal morbidity are undergoing an epidemiologic shift to chronic conditions, as leading causes of pediatric mortality are slowly quelled

    Neutrophils: the forgotten cell in JIA disease pathogenesis

    Get PDF
    Juvenile idiopathic arthritis (JIA) has long been assumed to be an autoimmune disease, triggered by aberrant recognition of "self" antigens by T-cells. However, systems biology approaches to this family of diseases have suggested complex interactions between innate and adaptive immunity that underlie JIA. In particular, new data suggest an important role for neutrophils in JIA pathogenesis. In this short review, we will discuss the new data that support a role for neutrophils in JIA, discuss regulatory functions that link neutrophils to adaptive immune responses, and discuss future areas of investigation. Above all else, we invite the reader to re-consider the use of the term "autoimmunity" as applied to the family of illnesses we collectively call JIA

    BLAST Ring Image Generator (BRIG): simple prokaryote genome comparisons

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Visualisation of genome comparisons is invaluable for helping to determine genotypic differences between closely related prokaryotes. New visualisation and abstraction methods are required in order to improve the validation, interpretation and communication of genome sequence information; especially with the increasing amount of data arising from next-generation sequencing projects. Visualising a prokaryote genome as a circular image has become a powerful means of displaying informative comparisons of one genome to a number of others. Several programs, imaging libraries and internet resources already exist for this purpose, however, most are either limited in the number of comparisons they can show, are unable to adequately utilise draft genome sequence data, or require a knowledge of command-line scripting for implementation. Currently, there is no freely available desktop application that enables users to rapidly visualise comparisons between hundreds of draft or complete genomes in a single image.</p> <p>Results</p> <p>BLAST Ring Image Generator (BRIG) can generate images that show multiple prokaryote genome comparisons, without an arbitrary limit on the number of genomes compared. The output image shows similarity between a central reference sequence and other sequences as a set of concentric rings, where BLAST matches are coloured on a sliding scale indicating a defined percentage identity. Images can also include draft genome assembly information to show read coverage, assembly breakpoints and collapsed repeats. In addition, BRIG supports the mapping of unassembled sequencing reads against one or more central reference sequences. Many types of custom data and annotations can be shown using BRIG, making it a versatile approach for visualising a range of genomic comparison data. BRIG is readily accessible to any user, as it assumes no specialist computational knowledge and will perform all required file parsing and BLAST comparisons automatically.</p> <p>Conclusions</p> <p>There is a clear need for a user-friendly program that can produce genome comparisons for a large number of prokaryote genomes with an emphasis on rapidly utilising unfinished or unassembled genome data. Here we present BRIG, a cross-platform application that enables the interactive generation of comparative genomic images via a simple graphical-user interface. BRIG is freely available for all operating systems at <url>http://sourceforge.net/projects/brig/</url>.</p

    diArk 2.0 provides detailed analyses of the ever increasing eukaryotic genome sequencing data

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Nowadays, the sequencing of even the largest mammalian genomes has become a question of days with current next-generation sequencing methods. It comes as no surprise that dozens of genome assemblies are released per months now. Since the number of next-generation sequencing machines increases worldwide and new major sequencing plans are announced, a further increase in the speed of releasing genome assemblies is expected. Thus it becomes increasingly important to get an overview as well as detailed information about available sequenced genomes. The different sequencing and assembly methods have specific characteristics that need to be known to evaluate the various genome assemblies before performing subsequent analyses.</p> <p>Results</p> <p>diArk has been developed to provide fast and easy access to all sequenced eukaryotic genomes worldwide. Currently, diArk 2.0 contains information about more than 880 species and more than 2350 genome assembly files. Many meta-data like sequencing and read-assembly methods, sequencing coverage, GC-content, extended lists of alternatively used scientific names and common species names, and various kinds of statistics are provided. To intuitively approach the data the web interface makes extensive usage of modern web techniques. A number of search modules and result views facilitate finding and judging the data of interest. Subscribing to the RSS feed is the easiest way to stay up-to-date with the latest genome data.</p> <p>Conclusions</p> <p>diArk 2.0 is the most up-to-date database of sequenced eukaryotic genomes compared to databases like GOLD, NCBI Genome, NHGRI, and ISC. It is different in that only those projects are stored for which genome assembly data or considerable amounts of cDNA data are available. Projects in planning stage or in the process of being sequenced are not included. The user can easily search through the provided data and directly access the genome assembly files of the sequenced genome of interest. diArk 2.0 is available at <url>http://www.diark.org</url>.</p

    Clinical features of the myasthenic syndrome arising from mutations in GMPPB

    Get PDF
    BACKGROUND: Congenital myasthenic syndrome (CMS) due to mutations in GMPPB has recently been reported confirming the importance of glycosylation for the integrity of neuromuscular transmission. METHODS: Review of case notes of patients with mutations in GMPPB to identify the associated clinical, neurophysiological, pathological and laboratory features. In addition, serum creatine kinase (CK) levels within the Oxford CMS cohort were retrospectively analysed to assess its usefulness in the differential diagnosis of this new entity. RESULTS: All patients had prominent limb-girdle weakness with minimal or absent craniobulbar manifestations. Presentation was delayed beyond infancy with proximal muscle weakness and most patients recall poor performance in sports during childhood. Neurophysiology showed abnormal neuromuscular transmission only in the affected muscles and myopathic changes. Muscle biopsy showed dystrophic features and reduced α-dystroglycan glycosylation. In addition, myopathic changes were present on muscle MRI. CK was significantly increased in serum compared to other CMS subtypes. Patients were responsive to pyridostigimine alone or combined with 3,4-diaminopyridine and/or salbutamol. CONCLUSIONS: Patients with GMPPB-CMS have phenotypic features aligned with CMS subtypes harbouring mutations within the early stages of the glycosylation pathway. Additional features shared with the dystroglycanopathies include myopathic features, raised CK levels and variable mild cognitive delay. This syndrome underlines that CMS can occur in the absence of classic myasthenic manifestations such as ptosis and ophthalmoplegia or facial weakness, and links myasthenic disorders with dystroglycanopathies. This report should facilitate the recognition of this disorder, which is likely to be underdiagnosed and can benefit from symptomatic treatment

    Informing Patients About Placebo Effects: Using Evidence, Theory, and Qualitative Methods to Develop a New Website.

    Get PDF
    BACKGROUND: According to established ethical principles and guidelines, patients in clinical trials should be fully informed about the interventions they might receive. However, information about placebo-controlled clinical trials typically focuses on the new intervention being tested and provides limited and at times misleading information about placebos. OBJECTIVE: We aimed to create an informative, scientifically accurate, and engaging website that could be used to improve understanding of placebo effects among patients who might be considering taking part in a placebo-controlled clinical trial. METHODS: Our approach drew on evidence-, theory-, and person-based intervention development. We used existing evidence and theory about placebo effects to develop content that was scientifically accurate. We used existing evidence and theory of health behavior to ensure our content would be communicated persuasively, to an audience who might currently be ignorant or misinformed about placebo effects. A qualitative 'think aloud' study was conducted in which 10 participants viewed prototypes of the website and spoke their thoughts out loud in the presence of a researcher. RESULTS: The website provides information about 10 key topics and uses text, evidence summaries, quizzes, audio clips of patients' stories, and a short film to convey key messages. Comments from participants in the think aloud study highlighted occasional misunderstandings and off-putting/confusing features. These were addressed by modifying elements of content, style, and navigation to improve participants' experiences of using the website. CONCLUSIONS: We have developed an evidence-based website that incorporates theory-based techniques to inform members of the public about placebos and placebo effects. Qualitative research ensured our website was engaging and convincing for our target audience who might not perceive a need to learn about placebo effects. Before using the website in clinical trials, it is necessary to test its effects on key outcomes including patients' knowledge and capacity for making informed choices about placebos

    Whole genome sequencing,molecular typing and in vivovirulence of OXA-48-producingEscherichia coli isolates includingST131 H30-Rx, H22 and H41subclones

    Get PDF
    Carbapenem-resistant Enterobacteriaceae, including the increasingly reported OXA-48 Escherichia coli producers, are an emerging public health threat worldwide. Due to their alarming detection in our healthcare setting and their possible presence in the community, seven OXA-48-producing, extraintestinal pathogenic E. coli were analysed by whole genome sequencing as well as conventional tools, and tested for in vivo virulence. As a result, five E. coli OXA-48-producing subclones were detected (O25:H4-ST131/PST43-fimH30-virotype E; O25:H4-ST131/PST9-fimH22-virotype D5, O16:H5-ST131/ PST506-fimH41; O25:H5-ST83/PST207 and O9:H25-ST58/PST24). Four ST131 and one ST83 isolates satisfied the ExPEC status, and all except the O16:H5 ST131 isolate were UPEC. All isolates exhibited local inflammatory response with extensive subcutaneous necrosis but low lethality when tested in a mouse sepsis model. The blaOXA-48 gene was located in MOBP131/IncL plasmids (four isolates) or within the chromosome (three ST131 H30-Rx isolates), carried by Tn1999-like elements. All, except the ST83 isolate, were multidrug-resistant, with additional plasmids acting as vehicles for the spread of various resistance genes. This is the first study to analyse the whole genome sequences of blaOXA-48-positive ST131, ST58 and ST83 E. coli isolates in conjunction with experimental data, and to evaluate the in vivo virulence of blaOXA-48 isolates, which pose an important challenge to patient management
    corecore