4 research outputs found

    Continuing evolution of H6N2 influenza a virus in South African chickens and the implications for diagnosis and control

    Get PDF
    BACKGROUND : The threat of poultry-origin H6 avian influenza viruses to human health emphasizes the importance of monitoring their evolution. South Africa鈥檚 H6N2 epidemic in chickens began in 2001 and two co-circulating antigenic sub-lineages of H6N2 could be distinguished from the outset. The true incidence and prevalence of H6N2 in the country has been difficult to determine, partly due to the continued use of an inactivated whole virus H6N2 vaccine and the inability to distinguish vaccinated from non-vaccinated birds on serology tests. In the present study, the complete genomes of 12 H6N2 viruses isolated from various farming systems between September 2015 and February 2019 in three major chicken-producing regions were analysed and a serological experiment was used to demonstrate the effects of antigenic mismatch in diagnostic tests. RESULTS : Genetic drift in H6N2 continued and antigenic diversity in sub-lineage I is increasing; no sub-lineage II viruses were detected. Reassortment patterns indicated epidemiological connections between provinces as well as different farming systems, but there was no reassortment with wild bird or ostrich influenza viruses. The sequence mismatch between the official antigens used for routine hemagglutination inhibition (HI) testing and circulating field strains has increased steadily, and we demonstrated that H6N2 field infections are likely to be missed. More concerning, sublineage I H6N2 viruses acquired three of the nine HA mutations associated with human receptor-binding preference (A13S, V187D and A193N) since 2002. Most sub-lineage I viruses isolated since 2015 acquired the K702R mutation in PB2 associated with the ability to infect humans, whereas prior to 2015 most viruses in sub-lineages I and II contained the avian lysine marker. All strains had an unusual HA0 motif of PQVETRGIF or PQVGTRGIF. CONCLUSIONS : The H6N2 viruses in South African chickens are mutating and reassorting amongst themselves but have remained a genetically pure lineage since they emerged more than 18 years ago. Greater efforts must be made by government and industry in the continuous isolation and characterization of field strains for use as HI antigens, new vaccine seed strains and to monitor the zoonotic threat of H6N2 viruses.Additional file 1: Table S1a. Percentage nucleotide sequence identity in the HA genes of sub-lineage I viruses isolated since 2015.Additional file 2: Table S1b. Percentage amino sequence identity in the HA proteins of all sub-lineage I viruses.Additional file 3: Table S1c. Amino acid between-group distances.Additional file 4: Figure S1. Alignment of the hemagglutinin protein sequences of South African H6N2 isolates from chickens.Additional file 5: Table S2. Predicted glycosylation patterns in the surface glycoproteins of H6N2 influenza viruses isolated since 2015.Additional file 6: Figure S2. Alignment of the neuraminidase protein sequences of South African H6N2 isolates from chickens.Additional file 7: Figure S3. Alignment of the polymerase B2 (PB2) protein sequences of South African H6N2 isolates from chickens.This work was supported by the South African Department of Science and Technology /National Research Foundation鈥檚 South African Research Chair Initiative under grant No. 114612.The South African Department of Science and Technology /National Research Foundation鈥檚 South African Research Chair Initiative.https://bmcvetres.biomedcentral.comam2020Production Animal Studie

    Susceptibility and status of avian influenza in ostriches

    Get PDF
    The extensive nature of ostrich farming production systems bears the continual risk of point introductions of avian influenza virus (AIV) from wild birds, but immune status, management, population density, and other causes of stress in ostriches are the ultimate determinants of the severity of the disease in this species. From January 2012 to December 2014, more than 70 incidents of AIV in ostriches were reported in South Africa. These included H5N2 and H7N1 low pathogenicity avian influenza (LPAI) in 2012, H7N7 LPAI in 2013, and H5N2 LPAI in 2014. To resolve the molecular epidemiology in South Africa, the entire South African viral repository from ostriches and wild birds from 1991 to 2013 (n = 42) was resequenced by next-generation sequencing technology to obtain complete genomes for comparison. The phylogenetic results were supplemented with serological data for ostriches from 2012 to 2014, and AIV-detection data from surveillance of 17?762 wild birds sampled over the same period. Phylogenetic evidence pointed to wild birds, e.g., African sacred ibis (Threskiornis aethiopicus), in the dissemination of H7N1 LPAI to ostriches in the Eastern and Western Cape provinces during 2012, in separate incidents that could not be epidemiologically linked. In contrast, the H7N7 LPAI outbreaks in 2013 that were restricted to the Western Cape Province appear to have originated from a single-point introduction from wild birds. Two H5N2 viruses detected in ostriches in 2012 were determined to be LPAI strains that were new introductions, epidemiologically unrelated to the 2011 highly pathogenic avian influenza (HPAI) outbreaks. Seventeen of 27 (63%) ostrich viruses contained the polymerase basic 2 (PB2) E627K marker, and 2 of the ostrich isolates that lacked E627K contained the compensatory Q591K mutation, whereas a third virus had a D701N mutation. Ostriches maintain a low upper- to midtracheal temperature as part of their adaptive physiology for desert survival, which may explain the selection in ratites for E627K or its compensatory mutations markers that facilitate AIV replication at lower temperatures. An AIV prevalence of 5.6% in wild birds was recorded between 2012 and 2014, considerably higher than AIV prevalence for the southern African region of 2.5% 3.6% reported in the period 2007 2009. Serological prevalence of AI in ostriches was 3.7%, 3.6%, and 6.1% for 2012, 2013, and 2014, respectively. An annual seasonal dip in incidence was evident around March/April (late summer/autumn), with peaks around July/August (mid to late winter). H5, H6, H7, and unidentified serotypes were present at varying levels over the 3-yr period.La extensa naturaleza de los sistemas de producci贸n de avestruz enfrenta el riesgo continuo de la presentaci贸n del virus de la influenza aviar (AIV) originado de aves silvestres, pero el estado inmunol贸gico, el manejo, la densidad de poblaci贸n, y otras causas de estr茅s en avestruces son determinantes importantes en la severidad de esta enfermedad en esta especie. De enero del 2012 a diciembre del 2014, se registraron m谩s de 70 casos de virus de influenza aviar en avestruces en Sud谩frica. Estos virus incluyeron virus de baja patogenicidad H5N2 y H7N1 en el a帽o 2012, virus de baja patogenicidad H7N7 en el a帽o 2013 y virus de baja patogenicidad H5N2 en 2014. Para resolver la epidemiolog铆a molecular en Sud谩frica, todo el repositorio de muestras virales de avestruces y aves silvestres en Sud谩frica del a帽o 1991 al 2013 (n = 42) fue re-analizado por an谩lisis de secuencias de pr贸xima generaci贸n para obtener genomas completos para su comparaci贸n. Los resultados filogen茅ticos se complementaron con datos serol贸gicos para avestruces del a帽o 2012 al 2014, y con los datos de detecci贸n en la vigilancia del virus de influenza aviar de 17?762 aves silvestres muestreadas durante el mismo per铆odo. La evidencia filogen茅tica se帽al贸 el papel de aves silvestres como los, ibis sagrados africanos (Threskiornis aethiopicus), en la difusi贸n de virus de influenza de baja patogenicidad H7N1 a las avestruces en las provincias del Este y del Cabo Occidental durante el a帽o 2012, en incidentes separados que no pudieron ser relacionados epidemiol贸gicamente. Por el contrario, los brotes con virus H7N7 de baja patogenicidad en el a帽o 2013, que se limitaban a la Provincia Occidental del Cabo parecen haberse originado a partir de una introducci贸n de un solo punto de aves silvestres. Se determin贸 que dos virus H5N2 detectados en avestruces en el a帽o 2012 de baja patogenicidad eran introducciones nuevas, que no estaban relacionadas epidemiol贸gicamente con los brotes de influenza aviar en el a帽o 2011. Diecisiete de 27 (63%) virus de avestruces conten铆an el marcador PB2 E627K, y dos de los aislados de avestruz que carec铆an del marcador E627K conten铆an la mutaci贸n compensatoria Q591K, mientras que un tercer virus ten铆a una mutaci贸n D701N. Las avestruces mantienen una temperatura baja en la parte media y baja de la tr谩quea como parte de su fisiolog铆a de adaptaci贸n para sobrevivir en el desierto, lo que puede explicar la selecci贸n de las ratites para la mutaci贸n E627K o sus mutaciones compensatorias que son marcadores que facilitan la replicaci贸n del virus de influenza aviar a temperaturas m谩s bajas. Se registr贸 una prevalencia del virus de influenza aviar de 5.6% en las aves silvestres, entre 2012 y 2014, considerablemente m谩s alta que la prevalencia del virus de influenza aviar de la regi贸n de 脕frica meridional de 2.5% ?3.6% reportada en el periodo entre los a帽os 2007-2009. La prevalencia serol贸gica de la influenza aviar en avestruces fue del 3.7%, 3.6% y 6.1% para los a帽os 2012, 2013 y 2014, respectivamente. Fue evidente una ca铆da estacional en la incidencia anual alrededor de Marzo y Abril (finales de verano/oto帽o), con picos alrededor de Julio y Agosto (mediados a finales de invierno). Los subtipos H5, H6, H7, y serotipos no identificados estuvieron presentes en diferentes niveles durante el per铆odo de tres a帽os.http://www.aaapjournals.info/loi/avdiProduction Animal Studie

    Susceptibility and Status of Avian Influenza in Ostriches

    No full text
    The extensive nature of ostrich farming production systems bears the continual risk of point introductions of avian influenza virus (AIV) from wild birds, but immune status, management, population density, and other causes of stress in ostriches are the ultimate determinants of the severity of the disease in this species. From January 2012 to December 2014, more than 70 incidents of AIV in ostriches were reported in South Africa. These included H5N2 and H7N1 low pathogenicity avian influenza (LPAI) in 2012, H7N7 LPAI in 2013, and H5N2 LPAI in 2014. To resolve the molecular epidemiology in South Africa, the entire South African viral repository from ostriches and wild birds from 1991 to 2013 (n = 42) was resequenced by next-generation sequencing technology to obtain complete genomes for comparison. The phylogenetic results were supplemented with serological data for ostriches from 2012 to 2014, and AIV-detection data from surveillance of 17?762 wild birds sampled over the same period. Phylogenetic evidence pointed to wild birds, e.g., African sacred ibis (Threskiornis aethiopicus), in the dissemination of H7N1 LPAI to ostriches in the Eastern and Western Cape provinces during 2012, in separate incidents that could not be epidemiologically linked. In contrast, the H7N7 LPAI outbreaks in 2013 that were restricted to the Western Cape Province appear to have originated from a single-point introduction from wild birds. Two H5N2 viruses detected in ostriches in 2012 were determined to be LPAI strains that were new introductions, epidemiologically unrelated to the 2011 highly pathogenic avian influenza (HPAI) outbreaks. Seventeen of 27 (63%) ostrich viruses contained the polymerase basic 2 (PB2) E627K marker, and 2 of the ostrich isolates that lacked E627K contained the compensatory Q591K mutation, whereas a third virus had a D701N mutation. Ostriches maintain a low upper- to midtracheal temperature as part of their adaptive physiology for desert survival, which may explain the selection in ratites for E627K or its compensatory mutations markers that facilitate AIV replication at lower temperatures. An AIV prevalence of 5.6% in wild birds was recorded between 2012 and 2014, considerably higher than AIV prevalence for the southern African region of 2.5% 3.6% reported in the period 2007 2009. Serological prevalence of AI in ostriches was 3.7%, 3.6%, and 6.1% for 2012, 2013, and 2014, respectively. An annual seasonal dip in incidence was evident around March/April (late summer/autumn), with peaks around July/August (mid to late winter). H5, H6, H7, and unidentified serotypes were present at varying levels over the 3-yr period.La extensa naturaleza de los sistemas de producci贸n de avestruz enfrenta el riesgo continuo de la presentaci贸n del virus de la influenza aviar (AIV) originado de aves silvestres, pero el estado inmunol贸gico, el manejo, la densidad de poblaci贸n, y otras causas de estr茅s en avestruces son determinantes importantes en la severidad de esta enfermedad en esta especie. De enero del 2012 a diciembre del 2014, se registraron m谩s de 70 casos de virus de influenza aviar en avestruces en Sud谩frica. Estos virus incluyeron virus de baja patogenicidad H5N2 y H7N1 en el a帽o 2012, virus de baja patogenicidad H7N7 en el a帽o 2013 y virus de baja patogenicidad H5N2 en 2014. Para resolver la epidemiolog铆a molecular en Sud谩frica, todo el repositorio de muestras virales de avestruces y aves silvestres en Sud谩frica del a帽o 1991 al 2013 (n = 42) fue re-analizado por an谩lisis de secuencias de pr贸xima generaci贸n para obtener genomas completos para su comparaci贸n. Los resultados filogen茅ticos se complementaron con datos serol贸gicos para avestruces del a帽o 2012 al 2014, y con los datos de detecci贸n en la vigilancia del virus de influenza aviar de 17?762 aves silvestres muestreadas durante el mismo per铆odo. La evidencia filogen茅tica se帽al贸 el papel de aves silvestres como los, ibis sagrados africanos (Threskiornis aethiopicus), en la difusi贸n de virus de influenza de baja patogenicidad H7N1 a las avestruces en las provincias del Este y del Cabo Occidental durante el a帽o 2012, en incidentes separados que no pudieron ser relacionados epidemiol贸gicamente. Por el contrario, los brotes con virus H7N7 de baja patogenicidad en el a帽o 2013, que se limitaban a la Provincia Occidental del Cabo parecen haberse originado a partir de una introducci贸n de un solo punto de aves silvestres. Se determin贸 que dos virus H5N2 detectados en avestruces en el a帽o 2012 de baja patogenicidad eran introducciones nuevas, que no estaban relacionadas epidemiol贸gicamente con los brotes de influenza aviar en el a帽o 2011. Diecisiete de 27 (63%) virus de avestruces conten铆an el marcador PB2 E627K, y dos de los aislados de avestruz que carec铆an del marcador E627K conten铆an la mutaci贸n compensatoria Q591K, mientras que un tercer virus ten铆a una mutaci贸n D701N. Las avestruces mantienen una temperatura baja en la parte media y baja de la tr谩quea como parte de su fisiolog铆a de adaptaci贸n para sobrevivir en el desierto, lo que puede explicar la selecci贸n de las ratites para la mutaci贸n E627K o sus mutaciones compensatorias que son marcadores que facilitan la replicaci贸n del virus de influenza aviar a temperaturas m谩s bajas. Se registr贸 una prevalencia del virus de influenza aviar de 5.6% en las aves silvestres, entre 2012 y 2014, considerablemente m谩s alta que la prevalencia del virus de influenza aviar de la regi贸n de 脕frica meridional de 2.5% ?3.6% reportada en el periodo entre los a帽os 2007-2009. La prevalencia serol贸gica de la influenza aviar en avestruces fue del 3.7%, 3.6% y 6.1% para los a帽os 2012, 2013 y 2014, respectivamente. Fue evidente una ca铆da estacional en la incidencia anual alrededor de Marzo y Abril (finales de verano/oto帽o), con picos alrededor de Julio y Agosto (mediados a finales de invierno). Los subtipos H5, H6, H7, y serotipos no identificados estuvieron presentes en diferentes niveles durante el per铆odo de tres a帽os.http://www.aaapjournals.info/loi/avdiProduction Animal Studie
    corecore