336 research outputs found

    In vivo and in vitro evaluation of combretastatin A-4 and its sodium phosphate prodrug

    Get PDF
    The anti-tumour effects and mechanism of action of combretastatin A-4 and its prodrug, combretastatin A-4 disodium phosphate, were examined in subcutaneous and orthotopically transplanted experimental colon tumour models. Additionally, the ability of these compounds to directly interfere with endothelial cell behaviour was also examined in HUVEC cultures. Combretastatin A-4 (150 mg kg–1, intraperitoneally (i.p.)) and its water-soluble prodrug (100 mg kg–1, i.p.) caused almost complete vascular shutdown (at 4 h), extensive haemorrhagic necrosis which started at 1 h after treatment and significant tumour growth delay in MAC 15A subcutaneous (s.c.) colon tumours. Similar vascular effects were obtained in MAC 15 orthotopic tumours and SW620 human colon tumour xenografts treated with the prodrug. More importantly, in the orthotopic models, necrosis was seen in vascularized metastatic deposits but not in avascular secondary deposits. The possible mechanism giving rise to these effects was examined in HUVEC cells. Here cellular networks formed in type I calf-skin collagen layers and these networks were completely disrupted when incubated with a non-cytotoxic concentration of combretastatin A-4 or its prodrug. This effect started at 4 h and was complete by 24 h. The same non-cytotoxic concentrations resulted in disorganization of F-actin and β-tubulin at 1 h after treatment. In conclusion, combretastatin A-4 and its prodrug caused extensive necrosis in MAC 15A s.c. and orthotopic colon cancer and metastases, resulting in anti-tumour effects. Necrosis was not seen in avascular tumour nodules, suggesting a vascular mechanism of action. © 1999 Cancer Research Campaig

    Quick and Simple Detection Technique to Assess the Binding of Antimicrotubule Agents to the Colchicine-Binding Site

    Get PDF
    Development of antimitotic binding to the colchicine-binding site for the treatment of cancer is rapidly expanding. Numerous antimicrotubule agents are prepared every year, and the determination of their binding affinity to tubulin requires the use of purified tubulins and radiolabeled ligands. Such a procedure is costly and time-consuming and therefore is limited to the most promising candidates. Here, we report a quick and inexpensive method that requires only usual laboratory resources to assess the binding of antimicrotubules to colchicine-binding site. The method is based on the ability of N,N'-ethylene-bis(iodoacetamide) (EBI) to crosslink in living cells the cysteine residues at position 239 and 354 of β-tubulin, residues which are involved in the colchicine-binding site. The β-tubulin adduct formed by EBI is easily detectable by Western blot as a second immunoreacting band of β-tubulin that migrates faster than β-tubulin. The occupancy of colchicine-binding site by pertinent antimitotics inhibits the formation of the EBI: β-tubulin adduct, resulting in an assay that allows the screening of new molecules targeting this binding site

    A phase II trial of bryostatin-1 administered by weekly 24-hour infusion in recurrent epithelial ovarian carcinoma

    Get PDF
    Bryostatin-1 is a macrocyclic lactone whose main mechanism of action is protein kinase C modulation. We investigated its activity as a weekly 24-h infusion in recurrent ovarian carcinoma. In all, 17 patients were recruited and 11 had chemotherapy-resistant disease as defined by disease progression within 4 months of last cytotoxic therapy. All were evaluable for toxicity and 14 for response. There were no disease responses and the main toxicity was myalgia

    Selective Targeting of Tumorigenic Cancer Cell Lines by Microtubule Inhibitors

    Get PDF
    For anticancer drug therapy, it is critical to kill those cells with highest tumorigenic potential, even when they comprise a relatively small fraction of the overall tumor cell population. We have used the established NCI/DTP 60 cell line growth inhibition assay as a platform for exploring the relationship between chemical structure and growth inhibition in both tumorigenic and non-tumorigenic cancer cell lines. Using experimental measurements of “take rate” in ectopic implants as a proxy for tumorigenic potential, we identified eight chemical agents that appear to strongly and selectively inhibit the growth of the most tumorigenic cell lines. Biochemical assay data and structure-activity relationships indicate that these compounds act by inhibiting tubulin polymerization. Yet, their activity against tumorigenic cell lines is more selective than that of the other microtubule inhibitors in clinical use. Biochemical differences in the tubulin subunits that make up microtubules, or differences in the function of microtubules in mitotic spindle assembly or cell division may be associated with the selectivity of these compounds

    Future therapeutic targets in rheumatoid arthritis?

    Get PDF
    Rheumatoid arthritis (RA) is a chronic inflammatory disease characterized by persistent joint inflammation. Without adequate treatment, patients with RA will develop joint deformity and progressive functional impairment. With the implementation of treat-to-target strategies and availability of biologic therapies, the outcomes for patients with RA have significantly improved. However, the unmet need in the treatment of RA remains high as some patients do not respond sufficiently to the currently available agents, remission is not always achieved and refractory disease is not uncommon. With better understanding of the pathophysiology of RA, new therapeutic approaches are emerging. Apart from more selective Janus kinase inhibition, there is a great interest in the granulocyte macrophage-colony stimulating factor pathway, Bruton's tyrosine kinase pathway, phosphoinositide-3-kinase pathway, neural stimulation and dendritic cell-based therapeutics. In this review, we will discuss the therapeutic potential of these novel approaches

    Facilitative parenting and children's social, emotional and behavioural adjustment

    Get PDF
    Facilitative parenting (FP) supports the development of children’s social and emotional competence and effective peer relationships. Previous research has shown that FP discriminates between children bullied by peers from children who are not bullied, according to reports of teachers. This study investigates the association between FP and children’s social, emotional and behavioral problems, over and above the association with dysfunctional parenting (DP). 215 parents of children aged 5–11 years completed questionnaires about parenting and child behavior, and children and teachers completed measures of child bullying victimization. As predicted, FP accounted for variance in teacher reports of children’s bullying victimization as well as parent reports of children’s social and emotional problems and prosocial behavior better than that accounted for by DP. However for children’s reports of peer victimization the whole-scale DP was a better predictor than FP. Contrary to predictions, FP accounted for variance in conduct problems and hyperactivity better than DP. When analyses were replicated substituting subscales of dysfunctional and FP, a sub-set of FP subscales including Warmth, Supports Friendships, Not Conflicting, Child Communicates and Coaches were correlated with low levels of problems on a broad range of children’s adjustment problems. Parent–child conflict accounted for unique variance in children’s peer victimization (teacher report), peer problems, depression, emotional problems, conduct problems and hyperactivity. The potential relevance of FP as a protective factor for children against a wide range of adjustment problems is discussed

    Assessment of splenic function

    Get PDF
    Hyposplenic patients are at risk of overwhelming post-splenectomy infection (OPSI), which carries mortality of up to 70%. Therefore, preventive measures are warranted. However, patients with diminished splenic function are difficult to identify. In this review we discuss immunological, haematological and scintigraphic parameters that can be used to measure splenic function. IgM memory B cells are a potential parameter for assessing splenic function; however, more studies are necessary for its validation. Detection of Howell–Jolly bodies does not reflect splenic function accurately, whereas determining the percentage of pitted erythrocytes is a well-evaluated method and seems a good first-line investigation for assessing splenic function. When assessing spleen function, 99mTc-labelled, heat-altered, autologous erythrocyte scintigraphy with multimodality single photon emission computed tomography (SPECT)-CT technology is the best approach, as all facets of splenic function are evaluated. In conclusion, although scintigraphic methods are most reliable, they are not suitable for screening large populations. We therefore recommend using the percentage of pitted erythrocytes, albeit suboptimal, as a first-line investigation and subsequently confirming abnormal readings by means of scintigraphy. More studies evaluating the value of potentially new markers are needed

    Synthesis and Biological Evaluation of 2-Methyl-4,5-Disubstituted Oxazoles as a Novel Class of Highly Potent Antitubulin Agents

    Get PDF
    Antimitotic agents that interfere with microtubule formation are one of the major classes of cytotoxic drugs for cancer treatment. Multiple 2-methyl-4-(3′,4′,5′-trimethoxyphenyl)-5-substituted oxazoles and their related 4-substituted-5-(3′,4′,5′-trimethoxyphenyl) regioisomeric derivatives designed as cis-constrained combretastatin A-4 (CA-4) analogues were synthesized and evaluated for their antiproliferative activity in vitro against a panel of cancer cell lines and, for selected highly active compounds, interaction with tubulin, cell cycle effects and in vivo potency. Both these series of compounds were characterized by the presence of a common 3′,4′,5′-trimethoxyphenyl ring at either the C-4 or C-5 position of the 2-methyloxazole ring. Compounds 4g and 4i, bearing a m-fluoro-p-methoxyphenyl or p-ethoxyphenyl moiety at the 5-position of 2-methyloxazole nucleus, respectively, exhibited the greatest antiproliferative activity, with IC50 values of 0.35-4.6 nM (4g) and 0.5–20.2 nM (4i), which are similar to those obtained with CA-4. These compounds bound to the colchicine site of tubulin and inhibited tubulin polymerization at submicromolar concentrations. Furthermore, 4i strongly induced apoptosis that follows the mitochondrial pathway. In vivo, 4i in a mouse syngeneic model demonstrated high antitumor activity which significantly reduced the tumor mass at doses ten times lower than that required for CA-4P, suggesting that 4i warrants further evaluation as a potential anticancer drug
    corecore