21 research outputs found
SecM-Stalled Ribosomes Adopt an Altered Geometry at the Peptidyl Transferase Center
A structure of a ribosome stalled during translation of the SecM peptide provides insight into the mechanism by which the large subunit active site is inactivated
Spike Detection for Large Neural Populations Using High Density Multielectrode Arrays
An emerging generation of high-density microelectrode arrays (MEAs) is now capable of recording spiking activity simultaneously from thousands of neurons with closely spaced electrodes. Reliable spike detection and analysis in such recordings is challenging due to the large amount of raw data, and the dense sampling of spikes with closely spaced electrodes.Here, we present a highly efficient, online capable spike detection algorithm, and an offline method with improved detection rates, which enables estimation of spatial event locations at a resolution higher than that provided by the array by combining information from multiple electrodes. Data acquired with a 4,096 channel MEA from neuronal cultures and the neonatal retina, as well as synthetic data was used to test and validate these methods.We demonstrate that these algorithms outperform conventional methods due to a better noise estimate and an improved signal-to-noise ratio through combining information from multiple electrodes. Finally, we present a new approach for analyzing population activity based on the characterization of the spatio-temporal event profile, which does not require the isolation of single units.Overall, we show how the improved spatial resolution provided by high density, large scale microelectrode arrays can be reliably exploited to characterize activity from large neural populations and brain circuits
Mutations in DCC cause isolated agenesis of the corpus callosum with incomplete penetrance
Brain malformations involving the corpus callosum are common in children with developmental disabilities. We identified DCC mutations in four families and five sporadic individuals with isolated agenesis of the corpus callosum (ACC) without intellectual disability. DCC mutations result in variable dominant phenotypes with decreased penetrance, including mirror movements and ACC associated with a favorable developmental prognosis. Possible phenotypic modifiers include the type and location of mutation and the sex of the individual
Supplementation with a probiotic mixture accelerates gut microbiome maturation and reduces intestinal inflammation in extremely preterm infants
Probiotics are increasingly administered to premature infants to prevent necrotizing enterocolitis and neonatal sepsis. However, their effects on gut microbiome assembly and immunity are poorly understood. Using a randomized intervention trial in extremely premature infants, we tested the effects of a probiotic product containing four strains of Bifidobacterium species autochthonous to the infant gut and one Lacticaseibacillus strain on the compositional and functional trajectory of microbiome. Daily administration of the mixture accelerated the transition into a mature, term-like microbiome with higher stability and species interconnectivity. Besides infant age, Bifidobacterium strains and stool metabolites were the best predictors of microbiome maturation, and structural equation modeling confirmed probiotics as a major determinant for the trajectory of microbiome assembly. Bifidobacterium-driven microbiome maturation was also linked to an anti-inflammatory intestinal immune milieu. This demonstrates that Bifidobacterium strains are ecosystem engineers that lead to an acceleration of microbiome maturation and immunological consequences in extremely premature infants