4 research outputs found

    Endocytotic uptake of iron oxide nanoparticles by cultured brain microglial cells

    No full text
    Microglia are the phagocytotic cells of the brain that respond rapidly to alterations in brain homeostasis. Since iron oxide nanoparticles (IONPs) are used for diagnostic and therapeutic applications in the brain, the consequences of an exposure of microglial cells to IONPs are of particular interest. To address this topic we have synthesized and characterized fluorescent BODIPY®-labelled IONPs (BP-IONPs). The average hydrodynamic diameter and the -potential of BP-IONPs in water were 65 nm and -49 mV, respectively. Both values increased after dispersion of the particles in serum containing incubation medium to 130 nm and -8 mV. Exposure of cultured rat microglial cells with BP-IONPs caused a time-, concentration- and temperature-dependent uptake of the particles, as demonstrated by strong increases in cellular iron contents and cellular fluorescence. Incubation for 3 h with 150 and 450 M iron as BP-IONPs increased the cellular iron content from a low basal level of 50 n mol iron mg-1 to 219 ± 52 and 481 ± 28 nmol iron (mg protein)-1, respectively. These conditions did not affect cell viability, but exposure to higher concentrations of BP-IONPs or for longer incubation periods severely compromised cell viability. The BP-IONP fluorescence in viable microglial cells was co-localized with lysosomes. In addition, BP-IONP accumulation was lowered by 60% in the presence of the endocytosis inhibitors 5-(N-ethyl-N-isopropyl)amiloride, tyrphostin 23 and chlorpromazin. These results suggest that the rapid accumulation of BP-IONPs by microglial cells is predominantly mediated by macropinocytosis and clathrin-mediated endocytosis, which direct the accumulated particles into the lysosomal compartment

    Uptake of Fluorescent Iron Oxide Nanoparticles by Oligodendroglial OLN-93 Cells

    No full text
    To investigate the cellular accumulation and intracellular localization of dimercaptosuccinate-coated iron oxide nanoparticles (D-IONPs) in oligodendroglial cells, we have synthesized IONPs that contain the fluorescent dye BODIPY (BP) in their coat (BP-D-IONPs) and have investigated the potential effects of the absence or presence of this dye on the particle uptake by oligodendroglial OLN-93 cells. Fluorescent BP-D-IONPs and non-fluorescent D-IONPs had similar hydrodynamic diameters and -potentials of around 60 nm and -58 mV, respectively, and showed identical colloidal stability in physiological media with increasing particle size and positivation of the -potential in presence of serum. After exposure of oligodendroglial OLN-93 cells to BP-D-IONPs or D-IONPs in the absence of serum, the specific cellular iron content increased strongly to around 1,800 nmol/mg. This strong iron accumulation was lowered for both types of IONPs by around 50 % on exposure of the cells at 4 C and by around 90 % on incubation in presence of 10 % serum. The accumulation of both D-IONPs and BP-D-IONPs in the absence of serum was not affected by endocytosis inhibitors, whereas in the presence of serum inhibitors of clathrin-dependent endocytosis lowered the particle accumulation by around 50 %. These data demonstrate that oligodendroglial cells efficiently accumulate IONPs by an endocytotic process which is strongly affected by the temperature and the presence of serum and that BP-D-IONPs are a reliable tool to monitor by fluorescence microscopy the uptake and cellular fate of D-IONPs

    Nanoparticles and potential neurotoxicity: focus on molecular mechanisms

    No full text
    corecore