2,514 research outputs found

    Intermittent Connectivity for Exploration in Communication-Constrained Multi-Agent Systems

    Get PDF
    Motivated by exploration of communication-constrained underground environments using robot teams, we study the problem of planning for intermittent connectivity in multi-agent systems. We propose a novel concept of information-consistency to handle situations where the plan is not initially known by all agents, and suggest an integer linear program for synthesizing information-consistent plans that also achieve auxiliary goals. Furthermore, inspired by network flow problems we propose a novel way to pose connectivity constraints that scales much better than previous methods. In the second part of the paper we apply these results in an exploration setting, and propose a clustering method that separates a large exploration problem into smaller problems that can be solved independently. We demonstrate how the resulting exploration algorithm is able to coordinate a team of ten agents to explore a large environment

    Role-similarity based functional prediction in networked systems: Application to the yeast proteome

    Full text link
    We propose a general method to predict functions of vertices where: 1. The wiring of the network is somehow related to the vertex functionality. 2. A fraction of the vertices are functionally classified. The method is influenced by role-similarity measures of social network analysis. The two versions of our prediction scheme is tested on model networks were the functions of the vertices are designed to match their network surroundings. We also apply these methods to the proteome of the yeast Saccharomyces cerevisiae and find the results compatible with more specialized methods

    Core-periphery organization of complex networks

    Full text link
    Networks may, or may not, be wired to have a core that is both itself densely connected and central in terms of graph distance. In this study we propose a coefficient to measure if the network has such a clear-cut core-periphery dichotomy. We measure this coefficient for a number of real-world and model networks and find that different classes of networks have their characteristic values. For example do geographical networks have a strong core-periphery structure, while the core-periphery structure of social networks (despite their positive degree-degree correlations) is rather weak. We proceed to study radial statistics of the core, i.e. properties of the n-neighborhoods of the core vertices for increasing n. We find that almost all networks have unexpectedly many edges within n-neighborhoods at a certain distance from the core suggesting an effective radius for non-trivial network processes

    Majority-vote model on hyperbolic lattices

    Full text link
    We study the critical properties of a non-equilibrium statistical model, the majority-vote model, on heptagonal and dual heptagonal lattices. Such lattices have the special feature that they only can be embedded in negatively curved surfaces. We find, by using Monte Carlo simulations and finite-size analysis, that the critical exponents 1/ν1/\nu, β/ν\beta/\nu and γ/ν\gamma/\nu are different from those of the majority-vote model on regular lattices with periodic boundary condition, which belongs to the same universality class as the equilibrium Ising model. The exponents are also from those of the Ising model on a hyperbolic lattice. We argue that the disagreement is caused by the effective dimensionality of the hyperbolic lattices. By comparative studies, we find that the critical exponents of the majority-vote model on hyperbolic lattices satisfy the hyperscaling relation 2β/ν+γ/ν=Deff2\beta/\nu+\gamma/\nu=D_{\mathrm{eff}}, where DeffD_{\mathrm{eff}} is an effective dimension of the lattice. We also investigate the effect of boundary nodes on the ordering process of the model.Comment: 8 pages, 9 figure

    Automatic generation: A way of ensuring PLC and HMI standards

    Get PDF
    Preparing an automatic production system takes a lot of time and to be able to decrease this time virtual simulation studies are used more and more frequently. However, even if more work is performed in a virtual environment a problem is still that the same work is done more than one time in different software tools due to the lack of integration between them. The present paper presents a case study that investigates how a newly developed tool called SIMATIC Automation Designer can be used in order to close the gap between the mechanical design and the electrical design. SIMATIC Automation Designer is a Siemens software that can generate PLC code and HMI screens. The result shows that by generating PLC code and HMI screens automatically, it is possible to get the same structure and naming standard in every PLC and HMI project. This will ensure a corporate standard and will be a quality assurance of the PLC code and HMI screens
    • …
    corecore