650 research outputs found
Graphene-based absorber exploiting guided mode resonances in one-dimensional gratings
A one-dimensional dielectric grating, based on a simple geometry, is proposed
and investigated to enhance light absorption in a monolayer graphene exploiting
guided mode resonances. Numerical findings reveal that the optimized
configuration is able to absorb up to 60% of the impinging light at normal
incidence for both TE and TM polarizations resulting in a theoretical
enhancement factor of about 26 with respect to the monolayer graphene
absorption (about 2.3%). Experimental results confirm this behaviour showing
CVD graphene absorbance peaks up to about 40% over narrow bands of few
nanometers. The simple and flexible design paves the way for the realization of
innovative, scalable and easy-to-fabricate graphene-based optical absorbers
Graphene-based perfect optical absorbers harnessing guided mode resonances
We numerically and experimentally investigate graphene-based optical
absorbers that exploit guided mode resonances (GMRs) achieving perfect
absorption over a bandwidth of few nanometers (over the visible and
near-infrared ranges) with a 40-fold increase of the monolayer graphene
absorption. We analyze the influence of the geometrical parameters on the
absorption rate and the angular response for oblique incidence. Finally, we
experimentally verify the theoretical predictions in a one-dimensional,
dielectric grating and placing it near either a metallic or a dielectric
mirror
Polarization Effect on the Performance of On-Chip Wireless Optical Point-to-Point Links
Optical on-chip wireless interconnection is an emerging technology that aims to overcome the communication bottleneck in computing architectures and in which multiple processing units are exploited for data-intensive applications. In this work, we propose an integrated dielectric Vivaldi antenna, which exhibits the same gain performances for both TE and TM input polarizations. Point-to-point on-chip communication links between two Vivaldi antennas are analyzed. Moreover, the effect of wave polarization on the link performances is numerically studied in on-chip multilayer structures in connection with the multilayer characteristic parameters, i.e., cladding layer thickness and refractive index. The numerical results show that, with the same antenna gain, TM polarization is affected by lower propagation losses when suitable cladding layer thickness and refractive index are considered
Extrafine beclomethasone/formoterol in severe COPD patients with history of exacerbations
The FORWARD study is a randomised, double-blind trial that compares the efficacy and safety of 48 weeks treatment with extrafine beclomethasone dipropionate/formoterol fumarate (BDP/FOR), 100/6 μg pMDI, 2 inhalations BID, vs. FOR 12 μg pMDI, 1 inhalation BID, in severe COPD patients with a history of exacerbations. Co-primary endpoints were exacerbation rate over 48 weeks and pre-dose morning FEV1 at 12 weeks. The ITT population included 1186 patients (69% males, mean age 64 years) with severe airflow limitation (mean post-bronchodilator FEV1 42% predicted). Salbutamol as rescue therapy, theophylline and tiotropium (if stable regimen prior to screening) were allowed. Compared to FOR, BDP/FOR: (1) reduced the exacerbation rate (rate ratio: 0.72 [95% confidence interval 0.62–0.84], p < 0.001); (2) improved pre-dose morning FEV1 (mean difference: 0.069 L [0.043–0.095] p < 0.001); (3) prolonged the time to first exacerbation; (4) improved the SGRQ total score. The percentage of patients with adverse events was similar (52.1% with BDP/FOR and 49.2% with FOR). Pneumonia incidence was low, slightly higher with BDP/FOR (3.8%) than with FOR (1.8%). No difference for laboratory values, ECG or vital signs. Extrafine BDP/FOR significantly reduces the exacerbation rate and improves lung function of patients with severe COPD and history of exacerbations as compared to FOR alone
Glucose Metabolism, Thyroid Function, and Prolactin Level in Adolescent Patients With First Episode of Schizophrenia and Affective Disorders
Schizophrenia and affective spectrum disorders (ASD) typically begin in adolescence or early adulthood. The pathophysiological mechanisms underlying these disorders are still not fully understood, and recent studies have suggested an involvement of dysfunctions in cardiometabolic and neuroendocrine systems at the onset of both disorders. In this context, we aimed to assess thyroid function, prolactin level, glucose metabolism, and lipid profile in drug naive adolescents, comparing patients with first episode of schizophrenia spectrum disorders (SSD) and patients with ASD. We performed a retrospective chart review from inpatients aged from ten to eighteen years, referred to Child and Adolescent Psychiatric Unit of University of Bari “Aldo Moro” over a period of 4 years, with diagnosis of SSD (n=30) or ASD (n=22), according to Diagnostic and Statistical Manual for Mental Disorders-fifth edition (DSM-5) criteria. Data on serum prolactin, glucose, insulin, total cholesterol, high density lipoprotein cholesterol, low density lipoprotein cholesterol, triglycerides, thyroid stimulating hormone, free triiodothyronin, and free thyroxin were collected, and the insulin resistance (IR) indexes “HOMA1-IR“ and “HOMA2-IR” were calculated. The multivariable linear regression models, adjusting for potential confounding factors (age, sex, and BMI), showed HOMA1-IR (p=0.001), HOMA2-IR (p=0.002), glucose (p=0.004), insulin (p=0.004) and free thyroxin (p<0.001) values higher in the SSD group than in ASD. No others significant differences were found. Our findings suggest the need for a metabolic and endocrine screening at the onset of SSD and ASD, particularly for indexes of IR, that is a testable and treatable risk factor for cardiometabolic diseases. Further studies are required to better understand the role of endocrinological and metabolic dysfunctions at the onset of severe mental illness also considering influencing factors as age, gender, and BMI
Interaction of glutathione transferase from horse erythrocytes with 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole
7-Chloro-4-nitrobenzo-2-oxa-1,3-diazole reacts with two thiol groups of the dimeric horse erythrocyte glutathione transferase at pH 5.0, with strong inactivation reversible on dithiothreitol treatment. The inactivation kinetic follows a biphasic pattern, similar to that caused by other thiol reagents as recently reported. Both S-methylglutathione and 1-chloro-2,4-dinitrobenzene protect the enzyme from inactivation. Analysis of the reactive SH group-containing peptide gives the sequence Ala-Ser-Cys-Leu-Tyr, identical with that of the peptide that contains the reactive cysteine 47 of the human placental transferase. In the presence of glutathione, the enzyme is not inactivated by this reagent, but it catalyzes its conjugation to glutathione. At higher pH values, 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole reacts with 2 tyrosines/dimer and lysines, as well as with cysteines. Reaction with lysine seems essentially without effect on activity; whether the reactive tyrosines are important for activity could not be determined using this reagent only. However, 2 tyrosines among the 4 that are nitrated by tetranitro-methane are important for activity
IDENTIFICATION OF E. COLI O157 IN A BOVINE MILK FARM BY MULTIPLEX REAL-TIME PCR
Law provisions about direct sell of raw bovine milk require VTEC O157 monitoring in bovine milk farms (milk and faeces). It has been showed that culture-based methods used for this scope, besides being cumbersome and time-consuming, may be also less sensitive, compared to molecular approaches. In this study, a multiplex Real-Time PCR, able to identify VTEC O157, Salmonella spp and Listeria monocytogenes, has been used to analyse milk, filter, sewage and stool samples from a milk farm, in comparison with standard OIE methods. The performances of the molecular protocol have been preliminary assessed with lyophilized samples from proficiency testing VLA, showing 100% accordance. Results from field samples indicated the absence of the pathogen in milk, and the higher sensitivity of Real-Time PCR with other matrices, suggesting its potential use for fast VTEC O157 identification
B and T Immunoregulation: A New Insight of B Regulatory Lymphocytes in Autism Spectrum Disorder
Introduction: Autism Spectrum Disorder (ASD) is a heterogeneous neurodevelopmental disorder characterized by a complex pathogenesis, by impairment social communication and interaction, and may also manifest repetitive patterns of behavior. Many studies have recognized an alteration of the immune response as a major etiological component in ASDs. Despite this, it is still unclear the variation of the function of the immune response. Aim: Our aim is to investigate the levels of immunological markers in peripheral blood of children with ASD such as: regulatory B and T cells, memory B and natural killer (NK) cells. Materials and Methods: We assessed various subsets of immune cells in peripheral blood (regulatory B and T cells, B-cell memory and natural killer cells) by multi-parametric flow cytometric analysis in 26 ASD children compared to 16 healthy controls (HCs) who matched age and gender. Results: No significant difference was observed between B-cell memory and NK cells in ASDs and HCs. Instead, regulatory B cells and T cells were decreased (p < 0.05) in ASD subjects when compared to HCs. Discussion: Regulatory B and T cells have a strategic role in maintaining the immune homeostasis. Their functions have been associated with the development of multiple pathologies especially in autoimmune diseases. According to our study, the immunological imbalance of regulatory B and T cells may play a pivotal role in the evolution of the disease, as immune deficiencies could be related to the severity of the ongoing disorder
Multi-level analysis of on-chip optical wireless links
Networks-on-chip are being regarded as a promising solution to meet the on-going requirement for higher and higher computation capacity. In view of future kilo-cores architectures, electrical wired connections are likely to become inefficient and alternative technologies are being widely investigated. Wireless communications on chip may be therefore leveraged to overcome the bottleneck of physical interconnections. This work deals with wireless networks-on-chip at optical frequencies, which can simplify the network layout and reduce the communication latency, easing the antenna on-chip integration process at the same time. On the other end, optical wireless communication on-chip can be limited by the heavy propagation losses and the possible cross-link interference. Assessment of the optical wireless network in terms of bit error probability and maximum communication range is here investigated through a multi-level approach. Manifold aspects, concurring to the final system performance, are simultaneously taken into account, like the antenna radiation properties, the data-rate of the core-to core communication, the geometrical and electromagnetic layout of the chip and the noise and interference level. Simulations results suggest that communication up to some hundreds of ÎĽm can be pursued provided that the antenna design and/or the target data-rate are carefully tailored to the actual layout of the chip
Multi-level analysis of on-chip optical wireless links
Networks-on-chip are being regarded as a promising solution to meet the on-going requirement for higher and higher computation capacity. In view of future kilo-cores architectures, electrical wired connections are likely to become inefficient and alternative technologies are being widely investigated. Wireless communications on chip may be therefore leveraged to overcome the bottleneck of physical interconnections. This work deals with wireless networks-on-chip at optical frequencies, which can simplify the network layout and reduce the communication latency, easing the antenna on-chip integration process at the same time. On the other end, optical wireless communication on-chip can be limited by the heavy propagation losses and the possible cross-link interference. Assessment of the optical wireless network in terms of bit error probability and maximum communication range is here investigated through a multi-level approach. Manifold aspects, concurring to the final system performance, are simultaneously taken into account, like the antenna radiation properties, the data-rate of the core-to core communication, the geometrical and electromagnetic layout of the chip and the noise and interference level. Simulations results suggest that communication up to some hundreds of \u3bcm can be pursued provided that the antenna design and/or the target data-rate are carefully tailored to the actual layout of the chip
- …