288 research outputs found
Partially autoionizing states of atomic oxygen
The Rydberg states 3d' (3Po)2,1,0 and 3s'' (3Po)2,1,0 and the inner shell transition 2s 2p5 (3Po)2,1,0, which are forbidden to autoionize on the basis of LS coupling, were observed in emission spectroscopy and in autoionization spectra produced in the photoelectron spectrum of atomic oxygen
The Relationship between Pain Sensitivity and Eye Tracking
The purpose of the study was to determine if laboratory-induced pain has possible effects on attention as captured by eye tracking technology
Quasi-bound states in continuum
We report the prediction of quasi-bound states (resonant states with very
long lifetimes) that occur in the eigenvalue continuum of propagating states
for a wide region of parameter space. These quasi-bound states are generated in
a quantum wire with two channels and an adatom, when the energy bands of the
two channels overlap. A would-be bound state that lays just below the upper
energy band is slightly destabilized by the lower energy band and thereby
becomes a resonant state with a very long lifetime (a second QBIC lays above
the lower energy band).Comment: 4 pages, 4figures, 1 tabl
Causality, delocalization and positivity of energy
In a series of interesting papers G. C. Hegerfeldt has shown that quantum
systems with positive energy initially localized in a finite region,
immediately develop infinite tails. In our paper Hegerfeldt's theorem is
analysed using quantum and classical wave packets. We show that Hegerfeldt's
conclusion remains valid in classical physics. No violation of Einstein's
causality is ever involved. Using only positive frequencies, complex wave
packets are constructed which at are real and finitely localized and
which, furthemore, are superpositions of two nonlocal wave packets. The
nonlocality is initially cancelled by destructive interference. However this
cancellation becomes incomplete at arbitrary times immediately afterwards. In
agreement with relativity the two nonlocal wave packets move with the velocity
of light, in opposite directions.Comment: 14 pages, 5 figure
Complex Energy Spectrum and Time Evolution of QBIC States in a Two-Channel Quantum wire with an Adatom Impurity
We provide detailed analysis of the complex energy eigenvalue spectrum for a
two-channel quantum wire with an attached adatom impurity. The study is based
on our previous work [Phys. Rev. Lett. 99, 210404 (2007)], in which we
presented the quasi-bound states in continuum (or QBIC states). These are
resonant states with very long lifetimes that form as a result of two
overlapping continuous energy bands one of which, at least, has a divergent van
Hove singularity at the band edge. We provide analysis of the full energy
spectrum for all solutions, including the QBIC states, and obtain an expansion
for the complex eigenvalue of the QBIC state. We show that it has a small decay
rate of the order , where is the coupling constant. As a result of
this expansion, we find that this state is a non-analytic effect resulting from
the van Hove singularity; it cannot be predicted from the ordinary perturbation
analysis that relies on Fermi's golden rule. We will also numerically
demonstrate the time evolution of the QBIC state using the effective potential
method in order to show the stability of the QBIC wave function in comparison
with that of the other eigenstates.Comment: Around 20 pages, 50 total figure
On the Thermal Symmetry of the Markovian Master Equation
The quantum Markovian master equation of the reduced dynamics of a harmonic
oscillator coupled to a thermal reservoir is shown to possess thermal symmetry.
This symmetry is revealed by a Bogoliubov transformation that can be
represented by a hyperbolic rotation acting on the Liouville space of the
reduced dynamics. The Liouville space is obtained as an extension of the
Hilbert space through the introduction of tilde variables used in the
thermofield dynamics formalism. The angle of rotation depends on the
temperature of the reservoir, as well as the value of Planck's constant. This
symmetry relates the thermal states of the system at any two temperatures. This
includes absolute zero, at which purely quantum effects are revealed. The
Caldeira-Leggett equation and the classical Fokker-Planck equation also possess
thermal symmetry. We compare the thermal symmetry obtained from the Bogoliubov
transformation in related fields and discuss the effects of the symmetry on the
shape of a Gaussian wave packet.Comment: Eqs.(64a), (65a)-(68) are correcte
Assessing hydrosystem influence on delayed mortality of Snake River stream-type Chinook salmon.
Abstract.-Snake River stream-type Chinook salmon Oncorhynchus tshawytscha exhibited substantial delayed mortality despite recent improvements in oceanic and climatic conditions. These salmon declined sharply with the completion of the Columbia River hydrosystem in addition to other anthropogenic impacts and changes in oceanic conditions. Previous analytical approaches have compared management options for halting the population decline. The predicted benefits of these options on salmon recovery hinged on whether the source of the mortality that takes place in the estuary and during early ocean residence is related to earlier hydrosystem experience during downstream migration (i.e., delayed hydrosystem mortality). We analyzed the spatial and temporal patterns of mortality for Chinook salmon populations to determine whether delayed mortality for the Snake River populations decreased during the recent period of favorable oceanic and climatic conditions. We found that Snake River stream-type Chinook salmon populations continued to exhibit survival patterns similar to those of their downriver counterparts but survived only one-fourth to one-third as well. The hypothesis that delayed mortality decreased and became negligible with more favorable oceanic conditions appears inconsistent with the patterns we observed for the common year effect and our estimates of delayed mortality of in-river migrants. A plausible explanation for this persistent pattern of delayed mortality for Snake River populations is that it is related to the construction and operation of the hydrosystem
Real measurements and Quantum Zeno effect
In 1977, Mishra and Sudarshan showed that an unstable particle would never be
found decayed while it was continuously observed. They called this effect the
quantum Zeno effect (or paradox). Later it was realized that the frequent
measurements could also accelerate the decay (quantum anti-Zeno effect). In
this paper we investigate the quantum Zeno effect using the definite model of
the measurement. We take into account the finite duration and the finite
accuracy of the measurement. A general equation for the jump probability during
the measurement is derived. We find that the measurements can cause inhibition
(quantum Zeno effect) or acceleration (quantum anti-Zeno effect) of the
evolution, depending on the strength of the interaction with the measuring
device and on the properties of the system. However, the evolution cannot be
fully stopped.Comment: 3 figure
INTRINSIC MECHANISM FOR ENTROPY CHANGE IN CLASSICAL AND QUANTUM EVOLUTION
It is shown that the existence of a time operator in the Liouville space
representation of both classical and quantum evolution provides a mechanism for
effective entropy change of physical states. In particular, an initially
effectively pure state can evolve under the usual unitary evolution to an
effectively mixed state.Comment: 20 pages. For more information or comments contact E. Eisenberg at
[email protected] (internet)
- …