30 research outputs found

    The Calcium Phosphate−Calcium Carbonate System: Growth of Octacalcium Phosphate on Calcium Carbonates

    Get PDF
    The kinetics of nucleation and crystal growth of octacalcium phosphate [Ca8(PO4)6H2·5H2O, OCP] from calcium phosphate supersaturated solutions inoculated with seed crystals was investigated at 37 °C, pH 7.40, at conditions of constant solution supersaturation. Stable calcium phosphate solutions, supersaturated with respect to OCP and hydroxyapatite [Ca5(PO4)3OH, HAP] were inoculated with calcium carbonate-based bone cement powder consisting of mixed aragonite and calcite crystals and with well-characterized calcite seed crystals. On all substrates tested, OCP nucleated followed by crystal growth of the nuclei formed past the lapse of induction times, inversely proportional to the solution supersaturation. From the dependence of the induction time on the solution supersaturation with respect to OCP, a value of 10 mJ m−2 was calculated for the nucleating phase. The rates of OCP crystal growth on the carbonate substrates showed linear dependence on the solution supersaturation that in combination with the independence from the fluid dynamics in the reactor suggested a surface diffusion-controlled mechanism. Moreover, the independence of the crystallization rates on the amount of the inoculating seed crystals suggested that nucleation and growth took place exclusively on the crystalline substrates. The transient calcium phosphate phase, OCP, was stabilized in our experiments, and it was the only phase growing at constant driving force, despite the fact the solutions were supersaturated with respect to HAP as well

    Crystal growth of aragonite in the presence of phosphate

    Get PDF
    The crystal growth of aragonite was investigated at pH 7.8, 37 °C and constant solution supersaturation from aragonite-seeded supersaturated solutions. The effect of the presence of orthophosphate ions in the supersaturated solution on the kinetics of crystallization of aragonite was investigated over the range of orthophosphate concentrations of 0.25 μM–1 mM. In the presence of orthophosphate in the range of 0.25 μM–8 μM, the crystal growth rate of aragonite decreased with increasing phosphate concentration. At orthophosphate concentration levels exceeding 2 μM, induction times were measured and were found to increase with orthophosphate concentration. At orthophosphate concentration levels > 8 μM, the crystal growth of aragonite was inhibited, suggesting the blockage of the active growth sites by the adsorption of orthophosphate ions. Adsorption was confirmed by the investigation of orthophosphate uptake on aragonite, which was: i) found to depend on the equilibrium concentration of orthophosphate in aqueous solutions saturated with respect to aragonite; ii) not influenced by the ionic strength of the electrolyte up to 0.15 M NaCl, showing that electrostatic interactions between orthophosphate and CaCO3 did not play a significant role in this concentration range. Adsorption data of orthophosphate on the aragonite crystals gave satisfactory fit to the Langmuir adsorption model and was confirmed by XPS analysis

    Model Studies of the Effect of Orthophospho- l

    No full text

    Calcium Carbonate Crystallization on a Microalgal Matrix: The Effects of Heavy Metal Presence

    No full text
    Microalgae and other microorganisms often play a significant role in the transportation of heavy metal ions in the environment, while at the same time they are closely related to the formation of minerals in aquatic systems, especially with the formation of calcium carbonate (CaCO3). The biomineralization of calcite was investigated in aqueous solutions, supersaturated with respect to calcium carbonate (7.94 calcite Acutodesmus obliquus (A. obliquus). The presence of metals tested in the supersaturated solutions, at concentration levels below the threshold of precipitation of the respective hydroxides, reduced the rate of calcium carbonate precipitation by 40 to 90% depending on the solution supersaturation. The presence of A. obliquus culture increased the rates of calcium carbonate precipitation by 80%. The presence of the test metals inhibited the growth of A. obliquus, especially the presence of Cd. The uptake of the test metals on calcite fitted Langmuir adsorption isotherm. Cadmium uptake onto calcite reached 85% of the total amount in the solutions. Charged ion pairs of test metals play an important role in their activity with respect to calcium carbonate precipitation and algal growth

    Phosphorus Recovery from Municipal Wastewater: Brucite from MgO Hydrothermal Treatment as Magnesium Source

    No full text
    Crystallization of struvite (MgNH4PO4·6H2O, MAPH) for both N and P recovery from municipal wastewater is an attractive alternative. The low magnesium concentration in municipal wastewater calls for low-cost magnesium sources. In the present work, the precipitation of struvite from supersaturated solutions was investigated. The supersaturated solutions were prepared by the addition of either slurry of Mg(OH)2 (brucite) obtained from the hydrothermal treatment of magnesium oxide (MgO) or using the aqueous solution equilibrated with brucite after separation from the solid. In both cases, in the supersaturated solutions prepared by the addition of ammonium dihydrogen phosphate, the Mg:NH4:P ratio was 1:1:1, pH 7.0–11.0. The apparent order for the precipitation suggested that the dominant mechanism was surface diffusion according to the polynuclear model. The apparent rate constant for struvite precipitation was two orders of magnitude smaller for the slurry prepared supersaturated solution in comparison with the respective prepared from the brucite-equilibrated solution. Simulated wastewater (SWW), was supersaturated with respect to struvite, by inoculation with brucite. The apparent rate constant was two orders of magnitude higher than that corresponding to the supersaturated solutions prepared by the addition of solution equilibrated with brucite. The P recovery from SWW reached 70%
    corecore