3,169 research outputs found
The solid state photomultiplier: Status of photon counting beyond the near-infrared
Rockwell International's Solid State Photomultiplier (SSPM) is an impurity-band avalanche device which can count individual photons with wavelengths between 0.4 and 28 micrometers. Its response to a photon is a pulse of between 10(exp 4) and 10(exp 5) conduction electrons, making it an important device for use in phenomenology. The characteristics of the SSPM make it a potentially important device for use in astronomical applications. Contract NAS2-12400 was initiated in June 1986 to conduct modeling and characterization studies of the SSPM to provide a basis for assessing its use in astronomical systems. Some SSPM models and results of measurements which characterize the group of SSPMs recently fabricated on this contract are discussed
Equilibrium Configurations of Homogeneous Fluids in General Relativity
By means of a highly accurate, multi-domain, pseudo-spectral method, we
investigate the solution space of uniformly rotating, homogeneous and
axisymmetric relativistic fluid bodies. It turns out that this space can be
divided up into classes of solutions. In this paper, we present two new classes
including relativistic core-ring and two-ring solutions. Combining our
knowledge of the first four classes with post-Newtonian results and the
Newtonian portion of the first ten classes, we present the qualitative
behaviour of the entire relativistic solution space. The Newtonian disc limit
can only be reached by going through infinitely many of the aforementioned
classes. Only once this limiting process has been consummated, can one proceed
again into the relativistic regime and arrive at the analytically known
relativistic disc of dust.Comment: 8 pages, colour figures, v3: minor additions including one reference,
accepted by MNRA
Spectroscopy of nanoscopic semiconductor rings
Making use of self-assembly techniques, we demonstrate the realization of
nanoscopic semiconductor quantum rings in which the electronic states are in
the true quantum limit. We employ two complementary spectroscopic techniques to
investigate both the ground states and the excitations of these rings. Applying
a magnetic field perpendicular to the plane of the rings, we find that when
approximately one flux quantum threads the interior of each ring, a change in
the ground state from angular momentum to takes place.
This ground state transition is revealed both by a drastic modification of the
excitation spectrum and by a change in the magnetic field dispersion of the
single-electron charging energy
Polarization memory in single Quantum Dots
We measured the polarization memory of excitonic and biexcitonic optical
transitions from single quantum dots at either positive, negative or neutral
charge states. Positive, negative and no circular or linear polarization memory
was observed for various spectral lines, under the same quasi-resonant
excitation below the wetting layer band-gap. We developed a model which
explains both qualitatively and quantitatively the experimentally measured
polarization spectrum for all these optical transitions. We consider quite
generally the loss of spin orientation of the photogenerated electron-hole pair
during their relaxation towards the many-carrier ground states. Our analysis
unambiguously demonstrates that while electrons maintain their initial spin
polarization to a large degree, holes completely dephase.Comment: 6 pages, 4 figure
Dynamic modulation of photonic crystal nanocavities using gigahertz acoustic phonons
Photonic crystal membranes (PCM) provide a versatile planar platform for
on-chip implementations of photonic quantum circuits. One prominent quantum
element is a coupled system consisting of a nanocavity and a single quantum dot
(QD) which forms a fundamental building block for elaborate quantum information
networks and a cavity quantum electrodynamic (cQED) system controlled by single
photons. So far no fast tuning mechanism is available to achieve control within
the system coherence time. Here we demonstrate dynamic tuning by monochromatic
coherent acoustic phonons formed by a surface acoustic wave (SAW) with
frequencies exceeding 1.7 gigahertz, one order of magnitude faster than
alternative approaches. We resolve a periodic modulation of the optical mode
exceeding eight times its linewidth, preserving both the spatial mode profile
and a high quality factor. Since PCMs confine photonic and phononic
excitations, coupling optical to acoustic frequencies, our technique opens ways
towards coherent acoustic control of optomechanical crystals.Comment: 11 pages 4 figure
Voltage-controlled electron-hole interaction in a single quantum dot
The ground state of neutral and negatively charged excitons confined to a
single self-assembled InGaAs quantum dot is probed in a direct absorption
experiment by high resolution laser spectroscopy. We show how the anisotropic
electron-hole exchange interaction depends on the exciton charge and
demonstrate how the interaction can be switched on and off with a small dc
voltage. Furthermore, we report polarization sensitive analysis of the
excitonic interband transition in a single quantum dot as a function of charge
with and without magnetic field.Comment: Conference Proceedings, Physics and Applications of Spin-Related
Phenomena in Semiconductors, Santa Barbara (CA), 2004. 4 pages, 4 figures;
content as publishe
Coulomb interactions in single, charged self-assembled quantum dots: radiative lifetime and recombination energy
We present results on the charge dependence of the radiative recombination
lifetime, Tau, and the emission energy of excitons confined to single
self-assembled InGaAs quantum dots. There are significant dot-to-dot
fluctuations in the lifetimes for a particular emission energy. To reach
general conclusions, we present the statistical behavior by analyzing data
recorded on a large number of individual quantum dots. Exciton charge is
controlled with extremely high fidelity through an n-type field effect
structure, providing access to the neutral exciton (X0), the biexciton (2X0)
and the positively (X1+) and negatively (X1-) charged excitons. We find
significant differences in the recombination lifetime of each exciton such
that, on average, Tau(X1-) / Tau(X0) = 1.25, Tau(X1+) / Tau(X0) = 1.58 and
Tau(2X0) / Tau(X0) = 0.65. We attribute the change in lifetime to significant
changes in the single particle hole wave function on charging the dot, an
effect more pronounced on charging X0 with a single hole than with a single
electron. We verify this interpretation by recasting the experimental data on
exciton energies in terms of Coulomb energies. We show directly that the
electron-hole Coulomb energy is charge dependent, reducing in value by 5-10% in
the presence of an additional electron, and that the electron-electron and
hole-hole Coulomb energies are almost equal.Comment: 8 pages, 7 figures, submitted to Phys. Rev.
- …