16 research outputs found

    Formation of the surface alloys by high-intensity pulsed electron beam irradiation of the coating/substrate system

    Get PDF
    The results of the analysis of the structure and properties of the surface layer of aluminum A7 subjected to alloying by the intense pulsed electron beam melting of the film / substrate system. Fold increase in strength and tribological properties of the modified surface layer due to the formation of submicro - nanoscale multiphase structure have been revealed

    Electron-ion plasma modification of Al-based alloys

    Get PDF
    The paper reports on the study where we analyzed the surface structure and strength properties of coated Al alloys modified by electron-ion plasma treatment. The Al alloys were deposited with a thin (≈0.5 μm) TiCu film coating (TiCu-Al system) and with a hard TiCuN coating (TiCuN–AlSi system) on a TRIO vacuum setup in the plasma of low-pressure arc discharges. The temperature fields and phase transformations in the film–substrate system were estimated by numerical simulation in a wide range of electron energy densities (5–30 J/cm2) and pulse durations (50–200 μs). The calculations allowed us to determine the threshold energy density and pulse duration at which the surface structure of the irradiated Al-based systems is transformed in a single-phase state (solid or liquid) and in a two-phase state (solid plus liquid). The elemental composition, defect structure, phase state, and lattice state in the modified surface layers were examined by optical, scanning, and transmission electron microscopy, and by X-ray diffraction analysis. The mechanical characteristics of the modified layers were studied by measuring the hardness and Young’s modulus. The tribological properties of the modified layers were analyzed by measuring the wear resistance and friction coefficient. It is shown that melting and subsequent high-rate crystallization of the TiCu–Al system makes possible a multiphase Al-based surface structure with the following characteristics: crystallite size ranging within micrometer, microhardness of more than 3 times that in the specimen bulk, and wear resistance ≈1.8 times higher compared to the initial material. Electron beam irradiation of the TiCuN–AlSi system allows fusion of the coating into the substrate, thus increasing the wear resistance of the material ≈2.2 times at a surface hardness of ∼14 GPa

    Fractography of the fatigue fracture surface of silumin irradiated by high-intensity pulsed electron beam

    Get PDF
    The surface modification of the eutectic silumin with high-intensity pulsed electron beam has been carried out. Multi-cycle fatigue tests were performed and irradiation mode made possible the increase in the silumin fatigue life more than 3.5 times was determined. Studies of the structure of the surface irradiation and surface fatigue fracture of silumin in the initial (unirradiated) state and after modification with intense pulsed electron beam were carried out by methods of scanning electron microscopy. It has been shown, that in mode of partial melting of the irradiation surface the modification process of silicon plates is accompanied by the formation of numerous large micropores along the boundary plate/matrix and microcracks located in the silicon plates. A multi-modal structure (grain size within 30-50 μm with silicon particles up to 10 μm located on the boundaries) is formed in stable melting mode, as well as subgrain structure in the form of crystallization cells from 100 to 250 μm in size). Formation of a multi-modal, multi-phase, submicro- and nanosize structure assisting to a significant increase in the critical length of the crack, the safety coefficient and decrease in step of cracks for loading cycle was the main cause for the increase in silumin fatigue life

    Combined treatment of steel, including electrospark doping and subsequent irradiation with a high-intensity electron beam

    Get PDF
    A thermodynamic analysis of phase transformations taking place during doping of steel with tungsten and titanium has been performed. The studies on the surface layer of steel modified using the combined method (electrospark doping and the subsequent electron-beam treatment) have been carried out. Formation in the surface layer of a multi-phase submicrocrystalline structure with high strength properties has been revealed

    Modification of the surface layer of the system coating (TiCuN)/substrate (A7) by an intensive electron beam

    Get PDF
    In order to study the conditions of modification of the surface layer of the system coating (TiCuN)/substrate (A7) an analysis of processes occurring in the surface layer of the system wear-resistant coating/substrate irradiated by an intensive pulsed electron beam at a submillisecond exposure time has been carried out on the example of aluminum and titanium nitride. Irradiation has been carried out under conditions ensuring melting and crystallization of the surface layer of the material by a nonequilibrium phase diagram. It has been experimentally established that irradiation of the system coating (TiCuN)/substrate (A7) by an intensive electron beam is accompanied by changes in the phase composition of the material. It is evident that nanostructuring of the aluminum layer adjacent to the coating, and formation in it of nitride phase particles will contribute to hardening of the surface layer of the material, creating a transition sublayer between a solid coating and a relatively soft volume. The carried out analysis shows that binary nitrides based on TiN1-x are most likely to form under nonequilibrium conditions, since the homogeneity range of this compound is rather large. On the other hand, formation of the ternary compound Ti3CuN, which can be formed after an arc plasma-assisted deposition of titanium nitride of the composition TiCuN and by the subsequent intensive pulsed electron beam exposure, cannot be excluded

    Electrospark doping of steel with tungsten

    Get PDF
    The paper is devoted to the numerical modeling of thermal processes and the analysis of the structure and properties of the surface layer of carbon steel subjected to electrospark doping with tungsten. The problem of finding the temperature field in the system film (tungsten) / substrate (iron) is reduced to the solution of the heat conductivity equation. A one-dimensional case of heating and cooling of a plate with the thickness d has been considered. Calculations of temperature fields formed in the system film / substrate synthesized using methods of electrospark doping have been carried out as a part of one-dimensional approximation. Calculations have been performed to select the mode of the subsequent treatment of the system film / substrate with a high-intensity pulsed electron beam. Authors revealed the conditions of irradiation allowing implementing processes of steel doping with tungsten. A thermodynamic analysis of phase transformations taking place during doping of iron with tungsten in equilibrium conditions has been performed. The studies have been carried out on the surface layer of the substrate modified using the method of electrospark doping. The results showed the formation in the surface layer of a structure with a highly developed relief and increased strength properties

    Formation of the surface alloys by high-intensity pulsed electron beam irradiation of the coating/substrate system

    Full text link
    The results of the analysis of the structure and properties of the surface layer of aluminum A7 subjected to alloying by the intense pulsed electron beam melting of the film / substrate system. Fold increase in strength and tribological properties of the modified surface layer due to the formation of submicro - nanoscale multiphase structure have been revealed

    Fractography of the fatigue fracture surface of silumin irradiated by high-intensity pulsed electron beam

    Full text link
    The surface modification of the eutectic silumin with high-intensity pulsed electron beam has been carried out. Multi-cycle fatigue tests were performed and irradiation mode made possible the increase in the silumin fatigue life more than 3.5 times was determined. Studies of the structure of the surface irradiation and surface fatigue fracture of silumin in the initial (unirradiated) state and after modification with intense pulsed electron beam were carried out by methods of scanning electron microscopy. It has been shown, that in mode of partial melting of the irradiation surface the modification process of silicon plates is accompanied by the formation of numerous large micropores along the boundary plate/matrix and microcracks located in the silicon plates. A multi-modal structure (grain size within 30-50 μm with silicon particles up to 10 μm located on the boundaries) is formed in stable melting mode, as well as subgrain structure in the form of crystallization cells from 100 to 250 μm in size). Formation of a multi-modal, multi-phase, submicro- and nanosize structure assisting to a significant increase in the critical length of the crack, the safety coefficient and decrease in step of cracks for loading cycle was the main cause for the increase in silumin fatigue life
    corecore