113 research outputs found
Parameterization of the dielectric function of semiconductor nanocrystals
Optical methods like spectroscopic ellipsometry are sensitive to structural
properties of semiconductor films such as crystallinity or grain size.
The imaginary part of the dielectric function is proportional to the joint
density of electronic states. Consequently, the analysis of the dielectric function
around the critical point energies provides useful information about the
electron band structure and all related parameters like the grain structure,
band gap, temperature, composition, phase structure, carrier mobility, etc.
In this work an attempt is made to present a selection of the approaches to
parameterize and analyze the dielectric function of semiconductors, as well
as some applications
Real-Time Ellipsometry at High and Low Temperatures
[Image: see text] Among the many available real-time characterization methods, ellipsometry stands out with the combination of high sensitivity and high speed as well as nondestructive, spectroscopic, and complex modeling capabilities. The thicknesses of thin films such as the complex dielectric function can be determined simultaneously with precisions down to sub-nanometer and 10(–4), respectively. Consequently, the first applications of high- and low-temperature real-time ellipsometry have been related to the monitoring of layer growth and the determination of optical properties of metals, semiconductors, and superconductors, dating back to the late 1960s. Ellipsometry has been ever since a steady alternative of nonpolarimetric spectroscopies in applications where quantitative information (e.g., thickness, crystallinity, porosity, band gap, absorption) is to be determined in complex layered structures. In this article the main applications and fields of research are reviewed
Optikai modellek fejlesztése sokösszetevős anyagrendszerek ellipszometriai vizsgálatához = Optical model development for ellipsometric study of many-compound materials
Az ellipszometria olyan optikai mĂłdszer, amely felĂĽletközeli, roncsolásmentes, in situ vizsgálatokat tesz lehetĹ‘vĂ©. A technolĂłgiába bekerĂĽlĹ‘ összetett rĂ©tegek törĂ©smutatĂłja általában nem ismert, vagy Ă©ppen az a meghatározandĂł mennyisĂ©g. Ebben az esetben a törĂ©smutatĂłt diszperziĂłs formulákkal, vagy az Ăşn. effektĂv közeg közelĂtĂ©ssel (vagy egyszerre mindkettĹ‘vel) határozhatjuk meg. Van lehetĹ‘sĂ©g olyan paramĂ©terek meghatározására is, amelyek egy-egy mikroszkĂłpikus szerkezeti tulajdonsággal (pl. sávszĂ©lessĂ©g ill. szemcsemĂ©ret, kĂĽlönbözĹ‘ fázisok) kapcsolatba hozhatĂłk. Ebben a munkában az egy- Ă©s polikristályos CdTe (amely egy igĂ©retes fotovoltaikus anyag) ion implantáciĂłval keltett hibasűrűsĂ©gĂ©nek az optikai tulajdonságaira valĂł hatását vizsgáltuk. A CdTe optikai tulajdonságainak kritikus pont struktĂşráinak szĂ©lessĂ©gĂ©t a kontrollált roncsoltság fĂĽggvĂ©nyĂ©ben határoztuk meg. Az effektĂv roncsoltság mint egyetlen paramĂ©ter szerinti parametrizáciĂłt kerestĂĽk, amely elegendĹ‘ az összes minta Ă©s a kritikus pontok szĂ©lessĂ©gĂ©nek szimultán leĂrásához. Ez a parametrizáciĂł szolgálhat adatbázisul a kĂĽlönbözĹ‘ feltĂ©telek között leválasztott CdTe filmek optikai tulajdonságainak fittelĂ©sĂ©hez. Ezen az Ăşton nyĂlik lehetĹ‘sĂ©g a CdTe gyártásközi, valĂłsidejű ellenĹ‘rzĂ©sĂ©re. | Ellipsometry is an optical method which makes possible near-surface, non-destructive, in-situ studies. However, the refractive index of the coumpound materials in the technology is usually unknown or just the only question. In this case, the refractive index can be determined using dispersion formula or the so called effective medium approximation, or both. There is a possibility to determine parameters which can be coupled with microscopical structural properties (such as band gap or grain size or different phases). In this project, we studied the effects of defect density caused by ion implantation on the optical properties of single and polycrystalline CdTe, which is a promising photovoltaic material. The widths of the critical point structures in the optical properties of CdTe were determined as a function of the controlled defect density. We seeked a parameterization of the optical properties with a single parameter – an effective defect density -- that is sufficient to modify all critical point widths simultaneously and describe the optical properties for the full set of samples. This parameterization can serve as a database to fit the optical properties of CdTe films during different growth conditions. In this way, it will be possible to use real time optical measurements of CdTe during its fabrication and processing
Nanoszemcsés szerkezetek és vékonyrétegek ellipszometriai modellezése bioszenzorikai és (opto)elektronikai alkalmazásokhoz = Ellipsometric modelling of nanograin structures and thin films for biological and (opto)electronical applications
FolyadĂ©kcellát, in situ mĂ©rĂ©si eljárást Ă©s optikai modelleket fejlesztettĂĽnk fehĂ©rjĂ©k leválasztás közbeni ellipszometriai mĂ©rĂ©sĂ©re. Az általunk fejlesztett 0,5 ml tĂ©rfogatĂş Ă©s az elĹ‘zĹ‘leg vásárolt 5 ml tĂ©rfogatĂş kereskedelmi folyadĂ©kcella szisztematikus összehasonlĂtĂł vizsgálatával, folyadĂ©kdinamikai szimuláciĂłval elemeztĂĽk Ă©s teszteltĂĽk a cellák legjobb beállĂtását Ă©s használhatĂłságának határait (pl. ablakkorrekciĂł, szĂĽksĂ©ges folyadĂ©kmennyisĂ©g). ElsĹ‘kĂ©nt vizsgáltuk flagellinbĹ‘l polimerizált filamentumok rögzĂtĂ©sĂ©t, a rögzĂtett rĂ©tegek szerkezetĂ©t Ă©s a leválasztás kinetikáját. Megmutattuk, hogy a flagellin-leválasztás kinetikája többrĂ©teges ellipszometriai modellel vizsgálhatĂł. Ezáltal rĂ©szletes betekintĂ©st nyerĂĽnk a rĂ©tegĂ©pĂĽlĂ©s folyamatába. Megvizsgáltuk a szubsztrát-minĹ‘sĂ©g Ă©s az aktiválás hatását az immobilizáciĂłra. MATLAB nyelven kifejlesztettĂĽnk egy teljes moduláris ellipszometriai kiĂ©rtĂ©kelĹ‘ rendszert, amelyben implementálni tudtuk saját modelljeinket, Ă©s amelyet az MFA 128-node-os szuperszámĂtĂłgĂ©pĂ©n Octave/Linux alatt futtatni tudtunk. SzoftverĂĽnkkel megmutattuk, hogy a parametrizált dielektromos fĂĽggvĂ©ny modell jĂłl használhatĂł porĂłzus szilĂcium, leválasztással lĂ©trehozott nanokristályos szilĂcium, ionimplantált szilĂcium Ă©s vegyĂĽletfĂ©lvezetĹ‘ szerkezetek rĂ©tegvastagságának, összetĂ©telĂ©nek, kristályosságának Ă©s szemcsemĂ©retĂ©nek meghatározására. A fenti anyagszerkezetek Ă©s a rendezett felĂĽleti struktĂşrák vizsgálatához paramĂ©ter-keresĹ‘ algoritmusokat fejlesztettĂĽnk. | We have developed a flow cell, in situ measurement, and optical models for the ellipsometric measurement of proteins during deposition. We have tested and evaluated the best conditions and the limit of capabilities (e.g. windows correction, needed volume of solution) through systematic comparative studies of a home-made 0,5-ml cell and a commercial 5-ml flow cell. We were the first who investigated the immobilization, structure and deposition kinetics of flagellar filaments. We have shown that the deposition kinetics can be studied in detail using multi-layer optical models. Using these models we have a detailed view of the mechanisms of layer growth. We have investigated the effect of activation and substrate properties on the immobilization. We have developed a complete modular ellipsometric software package in MATLAB to implement our special models, and to enable to run the programs on the 128-node super computer of the MFA using Octave/Linux. With our software we have shown that using parameterized dielectric functions the layer thickness, structure, composition, crystallinity, and grain size of porous silicon, deposited nanocrystalline silicon, ion implanted silicon, and compound semiconductors can be determined with a high sensitivity. We have developed parameter search algorithms to evaluate the above materials, as well as order surface structures
Optical properties of bioinspired disordered photonic nanoarchitectures
Bioinspired 1+2D nanoarchitectures inspired by the quasi-ordered structures occurring in
photonic nanoarchitectures of biological origin, like for example butterfly scales, were
produced by depositing a layer of SiO2 nanospheres (156 nm and 292 nm in diameter) on Si
wafers, over which a regular multilayer composed from three alternating layers of SiO2 and
TiO2 was deposited by physical vapor deposition. Flat multilayers were deposited in the same
run on oxidized Si (324 nm SiO2 thickness) for comparison. Different types of disorder (in
plane and out of plane) were purposefully allowed in the 1+2D nanoarchitectures. The
positions of the specular reflection maxima for the flat multilayer and for the two different
bioinspired nanoarchitectures were found to be similar. Additionally to this, the bioinspired
nanoarchitectures exhibited angle independent diffuse reflection too, which was absent in the
flat multilayer. Different model calculations were made to explain the specular and diffuse
optical properties of the samples. Satisfactory agreement was obtained between experimental
data and model calculations
- …