100 research outputs found

    End-to-End Audiovisual Fusion with LSTMs

    Full text link
    Several end-to-end deep learning approaches have been recently presented which simultaneously extract visual features from the input images and perform visual speech classification. However, research on jointly extracting audio and visual features and performing classification is very limited. In this work, we present an end-to-end audiovisual model based on Bidirectional Long Short-Term Memory (BLSTM) networks. To the best of our knowledge, this is the first audiovisual fusion model which simultaneously learns to extract features directly from the pixels and spectrograms and perform classification of speech and nonlinguistic vocalisations. The model consists of multiple identical streams, one for each modality, which extract features directly from mouth regions and spectrograms. The temporal dynamics in each stream/modality are modeled by a BLSTM and the fusion of multiple streams/modalities takes place via another BLSTM. An absolute improvement of 1.9% in the mean F1 of 4 nonlingusitic vocalisations over audio-only classification is reported on the AVIC database. At the same time, the proposed end-to-end audiovisual fusion system improves the state-of-the-art performance on the AVIC database leading to a 9.7% absolute increase in the mean F1 measure. We also perform audiovisual speech recognition experiments on the OuluVS2 database using different views of the mouth, frontal to profile. The proposed audiovisual system significantly outperforms the audio-only model for all views when the acoustic noise is high.Comment: Accepted to AVSP 2017. arXiv admin note: substantial text overlap with arXiv:1709.00443 and text overlap with arXiv:1701.0584

    Neural Conditional Ordinal Random Fields for Agreement Level Estimation

    Get PDF

    Investigating the Lombard Effect Influence on End-to-End Audio-Visual Speech Recognition

    Full text link
    Several audio-visual speech recognition models have been recently proposed which aim to improve the robustness over audio-only models in the presence of noise. However, almost all of them ignore the impact of the Lombard effect, i.e., the change in speaking style in noisy environments which aims to make speech more intelligible and affects both the acoustic characteristics of speech and the lip movements. In this paper, we investigate the impact of the Lombard effect in audio-visual speech recognition. To the best of our knowledge, this is the first work which does so using end-to-end deep architectures and presents results on unseen speakers. Our results show that properly modelling Lombard speech is always beneficial. Even if a relatively small amount of Lombard speech is added to the training set then the performance in a real scenario, where noisy Lombard speech is present, can be significantly improved. We also show that the standard approach followed in the literature, where a model is trained and tested on noisy plain speech, provides a correct estimate of the video-only performance and slightly underestimates the audio-visual performance. In case of audio-only approaches, performance is overestimated for SNRs higher than -3dB and underestimated for lower SNRs.Comment: Accepted for publication at Interspeech 201
    • …
    corecore