6 research outputs found

    Repurposing anti-inflammatory drugs for fighting planktonic and biofilm growth. New carbazole derivatives based on the NSAID carprofen: synthesis, in silico and in vitro bioevaluation

    Get PDF
    IntroductionOne of the promising leads for the rapid discovery of alternative antimicrobial agents is to repurpose other drugs, such as nonsteroidal anti-inflammatory agents (NSAIDs) for fighting bacterial infections and antimicrobial resistance.MethodsA series of new carbazole derivatives based on the readily available anti-inflammatory drug carprofen has been obtained by nitration, halogenation and N-alkylation of carprofen and its esters. The structures of these carbazole compounds were assigned by NMR and IR spectroscopy. Regioselective electrophilic substitution by nitration and halogenation at the carbazole ring was assigned from H NMR spectra. The single crystal X-ray structures of two representative derivatives obtained by dibromination of carprofen, were also determined. The total antioxidant capacity (TAC) was measured using the DPPH method. The antimicrobial activity assay was performed using quantitative methods, allowing establishment of the minimal inhibitory/bactericidal/biofilm eradication concentrations (MIC/MBC/MBEC) on Gram-positive (Staphylococcus aureus, Enterococcus faecalis) and Gram-negative (Escherichia coli, Pseudomonas aeruginosa) strains. Computational assays have been performed to assess the drug- and lead-likeness, pharmacokinetics (ADME-Tox) and pharmacogenomics profiles.Results and discussionThe crystal X-ray structures of 3,8-dibromocarprofen and its methyl ester have revealed significant differences in their supramolecular assemblies. The most active antioxidant compound was 1i, bearing one chlorine and two bromine atoms, as well as the CO2Me group. Among the tested derivatives, 1h bearing one chlorine and two bromine atoms has exhibited the widest antibacterial spectrum and the most intensive inhibitory activity, especially against the Gram-positive strains, in planktonic and biofilm growth state. The compounds 1a (bearing one chlorine, one NO2 and one CO2Me group) and 1i (bearing one chlorine, two bromine atoms and a CO2Me group) exhibited the best antibiofilm activity in the case of the P. aeruginosa strain. Moreover, these compounds comply with the drug-likeness rules, have good oral bioavailability and are not carcinogenic or mutagenic. The results demonstrate that these new carbazole derivatives have a molecular profile which deserves to be explored further for the development of novel antibacterial and antibiofilm agents

    Finite element analysis of a modified short hip endoprosthesis

    No full text
    A finite element simulation of the mechanical static features for a modified short hip endoprosthesis was performed. The corkscrew-like femoral stem was modified introducing more turns of the thread. By such an approach it is expected that for some cases the mechanical fixation of the prosthesis to the bone will be improved or the use of the cement for bonding is not necessary. Our scenario was estimated for titanium and stainless steel, and both materials show good safety factors. Mechanical stress is expected to be distributed more uniform in the bone for the new design with more turns of thread

    Antimicrobial Features of Organic Functionalized Graphene-Oxide with Selected Amines

    No full text
    (1) Background: Graphene oxide is a new carbon-based material that contains functional groups (carboxyl, hydroxyl, carbonyl, epoxy) and therefore can be easily functionalized with organic compounds of interest, yielding hybrid materials with important properties and applications. (2) Methods: Graphene oxide has been obtained by a modified Hummers method and activated by thionyl chloride in order to be covalently functionalized with amines. Thus obtained hybrid materials were characterized by infrared and Raman spectroscopy, elemental analysis and scanning electron microscopy and then tested for their antimicrobial and anti-biofilm activity. (3) Results: Eight amines of interest were used to functionalize grapheme oxide and the materials thus obtained were tested against Gram-negative (Escherichia coli, Pseudomonas aeruginosa) and Gram-positive (Staphylococcus aureus) bacterial strainsin plankonic and biofilm growth state. Both amines, as well as the functionalized materials, exhibited anti-microbial features. Three to five functionalized graphene oxide materials exhibited improved inhibitory activity against planktonic strains as compared with the respective amines. In exchange, the amines alone proved generally more efficient against biofilm-embedded cells. (4) Conclusions: Such hybrid materials may have a wide range of potential use in biomedical applications

    Design, Synthesis and In Vitro Characterization of Novel Antimicrobial Agents Based on 6-Chloro-9H-carbazol Derivatives and 1,3,4-Oxadiazole Scaffolds

    No full text
    In this paper, we aimed to exploit and combine in the same molecule the carbazole and the 1,3,4-oxadiazole pharmacophores, to obtain novel carprofen derivatives, by using two synthesis pathways. For the first route, the following steps have been followed: (i) (RS)-2-(6-chloro-9H-carbazol-2-yl)propanonic acid (carprofen) treatment with methanol, yielding methyl (RS)-2-(6-chloro-9H-carbazol-2-yl)propanoate; (ii) the resulted methylic ester was converted to (RS)-2-(6-chloro-9H-carbazol-2-yl)propane hydrazide (carprofen hydrazide) by treatment with hydrazine hydrate; (iii) reaction of the hydrazide derivative with acyl chlorides led to N-[(2RS)-2-(6-chloro-9H-carbazol-2-yl)propanoil]-N′-R-substituted-benzoylhydrazine formation, which; (iv) in reaction with phosphorus oxychloride gave the (RS)-1-(6-chloro-9H-carbazol-2-yl)-1-(1,3,4-oxadiazol-2-yl)ethane derivatives. In the second synthesis pathway, new 1,3,4-oxadiazole ring compounds were obtained starting from carprofen which was reacted with isoniazid, in the presence of phosphorus oxychloride to form (RS)-1-(6-chloro-9H-carbazol-2-yl)-1-[5-(4-pyridyl)-1,3,4-oxadiazol-2-yl]ethane. The synthesized compounds were characterized by IR, 1H-NMR and 13C-NMR, screened for their drug-like properties and evaluated for in vitro cytotoxicity and antimicrobial activity. The obtained compounds exhibited a good antimicrobial activity, some of the compounds being particularly active on E. coli, while others on C. albicans. The most significant result is represented by their exceptional anti-biofilm activity, particularly against the P. aeruginosa biofilm. The cytotoxicity assay revealed that at concentrations lower than 100 μg/mL, the tested compounds do not induce cytotoxicity and do not alter the mammalian cell cycle. The new synthesized compounds show good drug-like properties. The ADME-Tox profiles indicate a good oral absorption and average permeability through the blood brain barrier. However, further research is needed to reduce the predicted mutagenic potential and the hepatotoxicity
    corecore