12 research outputs found

    Stable or improved neurological manifestations during miglustat therapy in patients from the international disease registry for Niemann-Pick disease type C: an observational cohort study

    Get PDF
    Background: Niemann-Pick disease type C (NP-C) is a rare neurovisceral disease characterised by progressive neurological degeneration, where the rate of neurological disease progression varies depending on age at neurological onset. We report longitudinal data on functional disease progression and safety observations in patients in the international NPC Registry who received continuous treatment with miglustat. Methods: The NPC Registry is a prospective observational cohort of NP-C patients. Enrolled patients who received ≥1 year of continuous miglustat therapy (for ≥90 % of the observation period, with no single treatment interruption >28 days) were included in this analysis. Disability was measured using a scale rating the four domains, ambulation, manipulation, language and swallowing from 0 (normal) to 1 (worst). Neurological disease progression was analysed in all patients based on: 1) annual progression rates between enrolment and last follow up, and; 2) categorical analysis with patients categorised as 'improved/stable' if ≥3/4 domain scores were lower/unchanged, and as 'progressed' if <3 scores were lower/unchanged between enrolment and last follow-up visit. Results: In total, 283 patients were enrolled from 28 centers in 13 European countries, Canada and Australia between September 2009 and October 2013; 92 patients received continuous miglustat therapy. The mean (SD) miglustat exposure during the observation period (enrolment to last follow-up) was 2.0 (0.7) years. Among 84 evaluable patients, 9 (11 %) had early-infantile (<2 years), 27 (32 %) had late-infantile (2 to <6 years), 30 (36 %) had juvenile (6 to <15 years) and 18 (21 %) had adolescent/adult (≥15 years) onset of neurological manifestations. The mean (95%CI) composite disability score among all patients was 0.37 (0.32,0.42) at enrolment and 0.44 (0.38,0.50) at last follow-up visit, and the mean annual progression rate was 0.038 (0.018,0.059). Progression of composite disability scores appeared highest among patients with neurological onset during infancy or childhood and lowest in those with adolescent/adult-onset. Overall, 59/86 evaluable patients (69 %) were categorized as improved/stable and the proportion of improved/stable patients increased with age at neurological onset. Safety findings were consistent with previous data. Conclusions: Disability status was improved/stable in the majority of patients who received continuous miglustat therapy for an average period of 2 years

    Design of an High Frequency RFID Multi-Loop Antenna for Applications in Metallic Environments

    No full text
    Due to the fast growing of automatic processing in the majority of industrial applications, use of RFID technology is almost mandatory. These systems must identify, with high accuracy, objects placed at different angles or objects placed in harsh environments. In this paper, a new design of an HF RFID reader antenna is proposed, which uses a multi-loop configuration. This configuration ensures a uniform magnetic field on its entire surface, even if the antenna is placed on or very close to a metallic plane. The structure of the proposed antenna is mathematically modelled and computer simulated, as a proof of the concept, followed by a validation on an experimental prototype. Results confirm an increase of up to 9 times for the reading distance, compared with a standard HF RFID reader antenna, working in the same environment. The proposed model can be used in order to improve the accuracy of RFID tag identification in real life applications

    ?Healthcare IoT m-GreenCARDIO Remote Cardiac Monitoring System - Concept, Theory of Operation and Implementation

    No full text
    Present day Internet of Things (IoT) developers are inspired by the spectacular evolution in the field, and, at the same time, determined to connect an increasingly wider range of 'things', with the lowest power consumption, the wider range of action and interoperability guaranteed with excessive quality. Based on current challenges in the medical and electronic field, the present paper seeks the practical implementation of an efficient, low cost, low-power IoT medical system, yet with a greater memory autonomy. In this context, our main contribution is the implementation of a solution for ECG monitoring based on IoT techniques. This paper presents a qualitative research in the field of healthcare IoT and embedded applications meant to provide an innovative and flexible system meeting the stringent requirements of this area. Without compromising the performance intake and the low power consumption, the designers offer flexible options for connectivity and response time

    Massive Data Storage Solution for IoT Devices Using Blockchain Technologies

    No full text
    The Internet of Things (IoT) concept involves connecting devices to the internet and forming a network of objects that can collect information from the environment without human intervention. Although the IoT concept offers some advantages, it also has some issues that are associated with cyber security risks, such as the lack of detection of malicious wireless sensor network (WSN) nodes, lack of fault tolerance, weak authorization, and authentication of nodes, and the insecure management of received data from IoT devices. Considering the cybersecurity issues of IoT devices, there is an urgent need of finding new solutions that can increase the security level of WSNs. One issue that needs attention is the secure management and data storage for IoT devices. Most of the current solutions are based on systems that operate in a centralized manner, ecosystems that are easy to tamper with and provide no records regarding the traceability of the data collected from the sensors. In this paper, we propose an architecture based on blockchain technology for securing and managing data collected from IoT devices. By implementing blockchain technology, we provide a distributed data storage architecture, thus eliminating the need for a centralized network topology using blockchain advantages such as immutability, decentralization, distributivity, enhanced security, transparency, instant traceability, and increased efficiency through automation. From the obtained results, the proposed architecture ensures a high level of performance and can be used as a scalable, massive data storage solution for IoT devices using blockchain technologies. New WSN communication protocols can be easily enrolled in our data storage blockchain architecture without the need for retrofitting, as our system does not depend on any specific communication protocol and can be applied to any IoT application

    Interplay between the Structure and Relaxations in Selemion AMV Hydroxide Conducting Membranes for AEMFC Applications

    No full text
    Selemion AMV was studied to examine the relationship between the membrane chemical structure and its properties. The structure of AMV consists of two components: the functionalized polystyrene copolymer containing the ion-exchange moieties and PVC which is likely blended with copolymer. The PVC is primarily responsible for the mechanical properties of the membrane, but seems to undergo degradation during the anion-exchange process that leads to a reduction of the storage modulus. The functionalized polystyrene copolymer with the ion-exchange groups is primarily responsible for the electrical properties of the membrane. The AMV and AMVOH membranes exhibited conductivities of 2 and 7 mS\ub7cm-1 at 25\ub0C, respectively. The membrane exhibited Arrhenius behavior in all conditions that suggests the dynamics of the membrane are not significantly involved in the mechanism of long-range conduction. The MVOH membrane has two predominant pathways of charge exchange through the membrane: one through the bulk of the hydrophilic domains that is associated with the electrode polarization and another along the interface between the hydrophobic and hydrophilic domains associated with the interfacial polarization. These two separate phenomena provide significant percolation pathways that merge into a single contribution to the long-range charge migration at high water content. However, conduction along the interface does not provide as important a contribution to the long-range conductivity in the chloride form of the membrane
    corecore