17 research outputs found

    The Creation of a Critical Care Admission Pressure Injury Prevention Cart to Reduce Hospital-Acquired Pressure Injuries

    Get PDF
    The goal of this process improvement initiative is to reduce hospital-acquired pressure injuries related to Covid-19 with Critical Care patients. Critically ill and ventilated patients require prone position therapy and prolonged ventilator times place the patient at risk for hospital acquired conditions and pressure injuries. The Critical Care team created a Critical Care Admission Pressure Injury Prevention Cart that contains preventative dressings for all pressure areas at risk. The Critical Care Admission Pressure Injury Prevention Cart has significantly reduced the pressure injury rate. With the emergence of the pandemic and additional surges, pressure injuries continued to be on the rise due to prone position therapy. The Critical Care team worked with the system and developed prone position protocols, which included preventative dressings for all areas at risk. Prior to the implementation of the admission cart, Critical Care ended fiscal year 2022, quarter one, with fifty-three hospital acquired pressure injuries. Last December and early January 2022 there was another surge of Covid-19. The Critical Care team implemented the admission cart in January 2022. From January 2022 through September 2022, there has been an 98% reduction. The cart has been successful for Critical Care, and Baptist Hospital implemented the cart in all high acuity areas. This cart was a multidisciplinary practice, which consists of nursing, the wound and skin team, respiratory care, and leadership working together towards the goal of patient safety and pressure injury prevention

    Improving the Timing of Insulin Administration in Adult Acute Care Patients

    Get PDF
    Background: The correct timing of insulin administration in diabetic patients admitted to the hospital is important for the prevention of transient and serious glycemic deviations that could lead to negative patient outcomes. In November 2021, a South Florida Hospital identified an area of opportunity for quality improvement related to the process of subcutaneous insulin administration. In addition to bar code scanning, manual verification of the insulin dose by the primary nurse and another nurse was required prior to administration. Patients were experiencing delays in the timing of their insulin dose and nurses were reporting frustration with the process. Methods: The project followed the Plan-Do-Study-Act (PDSA) cycle for performance improvement. Results: The change in medication administration workflow resulted in achievement of administering insulin within 30 minutes of the scheduled time. Ninety percent of the nurses surveyed reported improvement in their workflow when giving subcutaneous insulin to their patients (n=112). Conclusion: Interdisciplinary collaboration, innovation in education of the nursing staff, monitoring adherence to the process, and sustaining engagement among stakeholders contributed to the success of this initiative, resulting in improved workflow in subcutaneous insulin administration. Keywords: Bar code medication administration, insulin, safety, quality improvemen

    Efficacy of PLD-118, a Novel Inhibitor of Candida Isoleucyl-tRNA Synthetase, against Experimental Oropharyngeal and Esophageal Candidiasis Caused by Fluconazole-Resistant C. albicans

    No full text
    PLD-118, formerly BAY 10-8888, is a synthetic antifungal derivative of the naturally occurring β-amino acid cispentacin. We studied the activity of PLD-118 in escalating dosages against experimental oropharyngeal and esophageal candidiasis (OPEC) caused by fluconazole (FLC)-resistant Candida albicans in immunocompromised rabbits. Infection was established by fluconazole-resistant (MIC > 64 μg/ml) clinical isolates from patients with refractory esophageal candidiasis. Antifungal therapy was administered for 7 days. Study groups consisted of untreated controls; animals receiving PLD-118 at 4, 10, 25, or 50 mg/kg of body weight/day via intravenous (i.v.) twice daily (BID) injections; animals receiving FLC at 2 mg/kg/day via i.v. BID injections; and animals receiving desoxycholate amphotericin B (DAMB) i.v. at 0.5 mg/kg/day. PLD-118- and DAMB-treated animals showed a significant dosage-dependent clearance of C. albicans from the tongue, oropharynx, and esophagus in comparison to untreated controls (P ≤ 0.05, P ≤ 0.01, P ≤ 0.001, respectively), while FLC had no significant activity. PLD-118 demonstrated nonlinear plasma pharmacokinetics across the investigated dosage range, as was evident from a dose-dependent increase in plasma clearance and a dose-dependent decrease in the area under the plasma concentration-time curve. The biochemical safety profile was similar to that of FLC. In summary, PLD-118 demonstrated dosage-dependent antifungal activity and nonlinear plasma pharmacokinetics in treatment of experimental FLC-resistant oropharyngeal and esophageal candidiasis

    Efficacy and Safety of Generic Amphotericin B in Experimental Pulmonary Aspergillosis

    No full text
    The recent shortage of the brand name drug Fungizone has necessitated a change to generic formulations of amphotericin B deoxycholate. Clinical trials cannot be conducted in a timely manner to provide data on the safety and efficacy of these formulations. We therefore compared generic amphotericin B and Fungizone for activity and safety in the treatment of experimental invasive pulmonary aspergillosis (IPA) in persistently neutropenic rabbits. Fungizone and generic amphotericin B are similar in efficacy, pharmacokinetics, and safety in the treatment of experimental IPA
    corecore