4 research outputs found

    Degradation of PET – Quantitative estimation of changes in molar mass using mechanical and thermal characterization methods

    No full text
    Polyethylene terephthalate (PET) films are used when mechanical strength, thermal and chemical stability, and barrier properties to atmospheric gases are required in combination with good processability. Hydrolysis leading to embrittlement of the material is a major concern as PET is used in a variety of applications with expected lifetimes of up to decades (e.g., for use in buildings, textiles, or photovoltaic backsheets). Therefore, a comprehensive understanding of the degradation processes and the effects on the molecular mass distribution is of great importance.Usually, the direct determination of molar mass and molar mass distribution involves high effort and sophisticated equipment. Therefore, the main objective of this work is to quantify molar mass changes due to accelerated aging using thermal and mechanical methods. Two stabilized PET films were subjected to seven different accelerated aging conditions (heat; combined heat-humidity). The samples were then characterized by size exclusion chromatography (SEC), tensile tests and differential scanning calorimetry (DSC).A linear correlation was found between crystallization temperature and average molar mass. The values of fracture stress from tensile tests indicate a ductile-brittle transition at a molar mass of 15 000 g mol−1. The study concludes that the crystallization temperature obtained from DSC measurements can be used to estimate changes in the average molar mass of PET after hydrolysis. Crystallization temperatures between 208 °C and 211 °C correspond to a critical reduction in molar mass and severe embrittlement

    Diels-Alder modified self-healing melamine resin

    No full text
    The self-healing effect of melamine-based surfaces, triggered by temperature, was investigated. The temperature triggered reversible healing chemistry, on which the self-healing effect is based, was the Diels-Alder (DA) reaction between furan and malemeide groups. Melamine-furan containing building blocks were connected by multi-functional maleimide crosslinker via a Diels-Alder (DA) reaction to giva a DA adduct. The DA adduct was then reacted with formaldehyde to form a network by conventional condensation reaction of melamine amino groups with formaldehyde. The obtained resin was characterised and used for the impregnation of paper. Impregnated papers and neat resin werde used to perform scratch-healing tests and mechanical analysis of the novel coating system

    Thermomechanical and microhardness data of melamine-formaldehyde-based self-healing resin film able to undergo reversible crosslinking via Diels-Alder reaction

    No full text
    The data presented in this article characterize the thermomechanical and microhardness properties of a novel melamine-formaldehyde resin (MF) intended for the use as a self-healing surface coating. The investigated MF resin is able to undergo reversible crosslinking via Diels Alder reactive groups. The microhardness data were obtained from nanoindentation measurements performed on solid resin film samples at different stages of the self-healing cycle. Thermomechanical analysis was performed under dynamic load conditions. The data provide supplemental material to the manuscript published by Urdl et al. 2020 (https://doi.org/10.1016/j.eurpolymj.2020.109601) on the self-healing performance of this resin, where a more thorough discussion on the preparation, the properties of this coating material and its application in impregnated paper-based decorative laminates can be found

    Comprehensive investigation of the viscoelastic properties of PMMA by nanoindentation

    No full text
    Instrumented nanoindentation (NI) was used to examine the viscoelastic properties of poly(methyl methacrylate) (PMMA) as an amorphous polymer model. An evaluation combining adhesive contact and empiric spring–dashpot models has been applied to obtain the instantaneous elastic modulus E0 and the infinitely elastic modulus E∞ from nanoindentation creep curves. The value of E0 has been compared to moduli obtained with atomic force microscopy-based nanoindentation (AFM-NI) and compression tests. Furthermore, the elastic modulus has been evaluated by the method introduced by Oliver and Pharr (O&P) for the NI and AFM-NI results. Comparison of the elastic modulus E0 from the creep measurements of NI and AFM-NI to compression tests reveals good agreement of the results. However, only the O&P based AFM-NI results yield to lower values
    corecore