74 research outputs found

    Ab initio description of the exotic unbound 7He nucleus

    Full text link
    The neutron rich exotic unbound 7He nucleus has been the subject of many experimental investigations. While the ground-state 3/2- resonance is well established, there is a controversy concerning the excited 1/2- resonance reported in some experiments as low-lying and narrow (E_R ~ 1 MeV, Gamma < 1 MeV) while in others as very broad and located at a higher energy. This issue cannot be addressed by ab initio theoretical calculations based on traditional bound-state methods. We introduce a new unified approach to nuclear bound and continuum states based on the coupling of the no-core shell model, a bound-state technique, with the no-core shell model/resonating group method, a nuclear scattering technique. Our calculations describe the ground-state resonance in agreement with experiment and, at the same time, predict a broad 1/2- resonance above 2 MeV.Comment: 5 pages, 3 figure

    ARIEL experiments and theory

    Full text link
    I present an overview of experiments at TRIUMF ARIEL and ISAC facilities covering both the current and the future envisioned programs. I also briefly review theory program at TRIUMF that relates to the ARIEL experimental program. I highlight several recent experimental results from the nuclear astrophysics, nuclear structure, fundamental symmetries, and the sterile neutrino search. Finally, I mention ongoing theoretical ab initio calculations of the proton capture on 7Li related to the X17 boson observation.Comment: Contribution to proceedings of the workshop New Scientific Opportunities with the TRIUMF ARIEL e-linac, 10 pages, 5 figure

    Unified ab initio approach to bound and unbound states: no-core shell model with continuum and its application to 7He

    Full text link
    We introduce a unified approach to nuclear bound and continuum states based on the coupling of the no-core shell model (NCSM), a bound-state technique, with the no-core shell model/resonating group method (NCSM/RGM), a nuclear scattering technique. This new ab initio method, no-core shell model with continuum (NCSMC), leads to convergence properties superior to either NCSM or NCSM/RGM while providing a balanced approach to different classes of states. In the NCSMC, the ansatz for the many-nucleon wave function includes: i) a square-integrable A-nucleon component expanded in a complete harmonic oscillator basis; ii) a binary-cluster component with asymptotic boundary conditions that can properly describe weakly-bound states, resonances and scattering; and, in principle, iii) a three-cluster component suitable for the description of, e.g., Borromean halo nuclei and reactions with final three-body states. The Schroedinger equation is transformed into a system of coupled-channel integral-differential equations that we solve using a modified microscopic R-matrix formalism within a Lagrange mesh basis. We demonstrate the usefulness of the approach by investigating the unbound 7He nucleus.Comment: 16 pages, 10 figure
    • …
    corecore