6 research outputs found
Complex microwave processing of high-ash brown coal in relation to the energy and metallurgical industries
Relevance. The need of the Tomsk region for valuable energy resources obtained from local low-grade resources to develop iron ore deposits available in the region and cover energy needs. Aim. To study gaseous and solid products obtained from low-grade brown coal of the Talovsky deposit (Tomsk region) under microwave pyrolysis conditions in relation to the energy and metallurgical industries. Objects. Brown coal of the Talovsky deposit (Tomsk region). Methods. Certified SS methods to determine thermal characteristics and elemental composition of coal organic and mineral parts, the "transmission-reflection" method for measuring imaginary (ε'') and real (ε') components of the complex dielectric permittivity, physical experiment, gas analysis, Brunauer–Emmett–Teller method for measuring texture characteristics. Results. Brown coal of the Talovsky deposit has high values of moisture and ash contents for operating conditions, which leads to a low calorific value. Such characteristics make it possible to classify coal as a low-grade fuel, which indicates the inexpediency of its use as a raw material for the energy and metallurgical industries. Thermal processing by means of microwave pyrolysis makes it possible to obtain a high-calorie (heat of combustion over 21 MJ/m3) and environmentally friendly (hydrogen content over 29%) gaseous fuel from the low-grade brown coal of the Talovsky deposit. The resulting solid carbonaceous residue has an ash content of over 48%, which required its chemical treatment in a solution of HF and HCl. As a result of the solid carbonaceous residue treatment, its ash content decreased by more than 38%, the sulfur content – by more than 1.5 times. According to its characteristics, the resulting product corresponds to the currently available carbonaceous products – semi-coke, coke and carbon reducing agent for ferroalloy production
Ni-Based Catalysts: Synthesis and Applications Today
Transition-metal-based catalysts are widely used in various processes, in particular—nickel-based catalysts [...
N-Heterocyclic Molecules as Potential Liquid Organic Hydrogen Carriers: Reaction Routes and Dehydrogenation Efficacy
This study is focused on the development of liquid organic hydrogen carriers (LOHC) based on N-heterocyclic compounds. These LOHC-substrates are attractive for their lower hydrogen extraction temperature compared to cycloalkanes, which is caused by the low enthalpy of the dehydrogenation reaction of the N-heterocyclic compounds. The low hydrogen extraction temperature, as well as the low volatility of the heterocycles, provide high purity hydrogen from the reaction. Under similar reaction conditions, the comparison of the efficacy of three promising heterocycles (1-methyl-octahydroindole (8HMI), tetradecahydrophenazine and decahydroquinoline) was carried out in the presence of palladium-containing catalysts. As a result, the advantages of using catalysts supported by alumina, and the high perspectivity of the 8MHI application as a LOHC-substrate, were shown. The dehydrogenation of 8HMI in the presence of 1 wt.% Pd/Al2O3 allowed for reaching a 100% yield in hydrogen under the conditions of the standard catalytic test (1 h, 240 °C). In order to study the high reactivity of 8HMI, thermodynamic dehydrogenation reaction profiles were computationally evaluated, which showed that 8HMI was the most energetically preferred in the field of hydrogen storage from the studied heterocyclic compounds
Carbonized Melamine Cyanurate as a Palladium Catalyst Support for the Dehydrogenation of N-heterocyclic Compounds in LOHC Technology
In this work, the use of graphite-like carbon nitride (g-C3N4) with improved texture characteristics for the synthesis of supported palladium catalysts of dehydrogenation of nitrogen-containing heterocycles was studied. This process is key to the creation of liquid organic carrier technology (LOHC) using N-heterocycles as reversibly hydrogenated/dehydrogenated substrates. For the preparation of graphite-like carbon nitride supports with advanced textural characteristics, well-established technology of the melamine cyanurate complex carbonization and standard techniques of adsorption precipitation together with wet impregnation were used for the synthesis of Pd-containing systems. The activity of the synthesized catalysts was studied in decahydroquinoline dehydrogenation. The high weight content of extractable hydrogen (7.2 wt%) and the high extraction rate, respectively, make it possible to consider these substances as the most promising N-heterocyclic compounds for this technology. It was shown that an increase in the specific surface area of g-C3N4 allows for achieving a slightly lower but comparable fineness of palladium particles for the 1 wt% Pd/MCA-500 sample, compared to the standard 1 wt% Pd/C. In this case, the catalytic activity of 1 wt% Pd/MCA-500 in the dehydrogenation of both substrates exceeded the analogous parameter for catalysts supported by nitrogen-free supports. This regularity is presumably associated with the electron-donor effect of surface nitrogen, which favorably affects the dehydrogenation rate as well as the stability of catalytic systems