6 research outputs found

    [68] Presence of viable circulating tumour cells in kidney cancer

    No full text
    Objective: To evaluate the presence of circulating tumour cells (CTCs) in the peripheral blood of patients with kidney cancer (KC) and the dependence of CTC quantification of surgery, as the presence of CTCs in the peripheral blood of patients with solid tumours is associated with poor prognosis but there are limited data concerning the detection of CTCs in KC. Methods: Peripheral blood samples from 45 patients who underwent a surgical procedure were evaluated using size-based separation technology for CTCs. In most of the patients there were the three blood collections. Results: CTCs were detected in 39 (87%) patients with KC. Conclusion: CTCs were detected in a higher percentage of patients than in other studies. The results show that the technology applied in this study can efficiently capture viable tumour cells in the blood that can be cultured, whilst maintaining their original phenotype. This paper discusses the first successful culturing of human circulating kidney cancer cells for further downstream functional and molecular characterisation

    Detection of Circulating Tumor Cells in Renal Cell Carcinoma: Disease Stage Correlation and Molecular Characterization

    No full text
    The presence of circulating tumor cells (CTCs) in patients with solid tumors is associated with poor prognosis. However, there are limited data concerning the detection of CTCs in renal cell cancer (RCC). The aim of this study is to evaluate the presence of CTCs in peripheral blood of patients with RCC undergoing surgery (n = 186). CTCs were tested before and after surgery as well as during the follow-up period afterwards. In total 495 CTC testing in duplicates were provided. To enrich CTCs, a size-based separation protocol and tube MetaCell® was used. CTCs presence was evaluated by single cell cytomorphology based on vital fluorescence microscopy. Additionally, to standardly applied fluorescence stains, CTCs viability was controlled by mitochondrial activity. CTCs were detected independently on the sampling order in up to 86.7% of the tested blood samples in patients undergoing RCC surgery. There is higher probability of CTC detection with growing tumor size, especially in clear cell renal cell cancer (ccRCC) cases. Similarly, the tumor size corresponds with metastasis presence and lymph node positivity and CTC detection. This paper describes for the first-time successful analysis of viable CTCs and their mitochondria as a part of the functional characterization of CTCs in RCC

    Mitochondrially targeted tamoxifen as anticancer therapy: case series of patients with renal cell carcinoma treated in a phase I/Ib clinical trial

    No full text
    Mitochondrially targeted anticancer drugs (mitocans) that disrupt the energy-producing systems of cancer are emerging as new potential therapeutics. Mitochondrially targeted tamoxifen (MitoTam), an inhibitor of mitochondrial respiration respiratory complex I, is a first-in-class mitocan that was tested in the phase I/Ib MitoTam-01 trial of patients with metastatic cancer. MitoTam exhibited a manageable safety profile and efficacy; among 37% (14/38) of responders, the efficacy was greatest in patients with metastatic renal cell carcinoma (RCC) with a clinical benefit rate of 83% (5/6) of patients. This can be explained by the preferential accumulation of MitoTam in the kidney tissue in preclinical studies. Here we report the mechanism of action and safety profile of MitoTam in a case series of RCC patients. All six patients were males with a median age of 69 years, who had previously received at least three lines of palliative systemic therapy and suffered progressive disease before starting MitoTam. We recorded stable disease in four, partial response in one, and progressive disease (PD) in one patient. The histological subtype matched clear cell RCC (ccRCC) in the five responders and claro-cellular carcinoma with sarcomatoid features in the non-responder. The number of circulating tumor cells (CTCs) was evaluated longitudinally to monitor disease dynamics. Beside the decreased number of CTCs after MitoTam administration, we observed a significant decrease of the mitochondrial network mass in enriched CTCs. Two patients had long-term clinical responses to MitoTam, of 50 and 36 weeks. Both patients discontinued treatment due to adverse events, not PD. Two patients who completed the trial in November 2019 and May 2020 are still alive without subsequent anticancer therapy. The toxicity of MitoTam increased with the dosage but was manageable. The efficacy of MitoTam in pretreated ccRCC patients is linked to the novel mechanism of action of this first-in-class mitochondrially targeted drug

    Molecular Basis of Cisplatin Resistance in Testicular Germ Cell Tumors

    No full text
    The emergence of cisplatin (CDDP) resistance is the main cause of treatment failure and death in patients with testicular germ cell tumors (TGCT), but its biologic background is poorly understood. To study the molecular basis of CDDP resistance in TGCT we prepared and sequenced CDDP-exposed TGCT cell lines as well as 31 primary patients’ samples. Long-term exposure to CDDP increased the CDDP resistance 10 times in the NCCIT cell line, while no major resistance was achieved in Tera-2. Development of CDDP resistance was accompanied by changes in the cell cycle (increase in G1 and decrease in S-fraction), increased number of acquired mutations, of which 3 were present within ATRX gene, as well as changes in gene expression pattern. Copy number variation analysis showed, apart from obligatory gain of 12p, several other large-scale gains (chr 1, 17, 20, 21) and losses (chr X), with additional more CNVs found in CDDP-resistant cells (e.g., further losses on chr 1, 4, 18, and gain on chr 8). In the patients’ samples, those who developed CDDP resistance and died of TGCT (2/31) showed high numbers of acquired aberrations, both SNPs and CNVs, and harbored mutations in genes potentially relevant to TGCT development (e.g., TRERF1, TFAP2C in one patient, MAP2K1 and NSD1 in another one). Among all primary tumor samples, the most commonly mutated gene was NSD1, affected in 9/31 patients. This gene encoding histone methyl transferase was also downregulated and identified among the 50 most differentially expressed genes in CDDP-resistant NCCIT cell line. Interestingly, 2/31 TGCT patients harbored mutations in the ATRX gene encoding a chromatin modifier that has been shown to have a critical function in sexual differentiation. Our research newly highlights its probable involvement also in testicular tumors. Both findings support the emerging role of altered epigenetic gene regulation in TGCT and CDDP resistance development
    corecore