29 research outputs found

    Centimeter-Level Positioning Using an Efficient New Baseband Mixing and Despreading Method for Software GNSS Receivers

    No full text
    This paper presents an efficient new method for performing the baseband mixing and despreading operations in a software-based GNSS receiver, and demonstrates that the method is capable of providing measurements for centimeter-level positioning accuracy. The method uses a single frequency carrier replica for the baseband mixing process, enabling all satellites to perform mixing simultaneously and yielding considerable computational savings. To compensate for signal-to-noise ratio (SNR) losses caused by using a single frequency carrier replica, the integration interval after despreading is divided into subintervals, and the output from each subinterval then compensated for the known frequency error. Using this approach, receiver processing times are shown to be reduced by approximately 21% relative to the next fastest method when tracking seven satellites. The paper shows the mathematical derivation of the new algorithm, discusses practical considerations, and demonstrates its performance using simulations and real data. Results show that the new method is able to generate pseudorange and carrier phase measurements with the same accuracy as traditional methods. Stand-alone positioning accuracy is at the meter level, while differential processing can produce fixed ambiguity carrier phase positions accurate to the centimeter level

    A method to improve the alignment performance for GPS-IMU System

    No full text

    Temporal impact of selected GPS errors on point positioning

    No full text

    GPS/Reduced IMU with a Local Terrain Predictor in Land Vehicle Navigation

    No full text
    In order to reduce the cost and volume of land vehicle navigation (LVN) systems, a “reduced” inertial measurement unit (IMU) consisting of only one vertical gyro and two or three accelerometers is generally used and is often integrated with other sensors. Since there are no horizontal gyros in a reduced IMU, the pitch and roll cannot be calculated or observed directly from the inertial data, and the navigation performance is thus affected by local terrain variations. In this work, a reduced IMU is integrated with global positioning system (GPS) data and a novel local terrain predictor (LTP) algorithm. The latter is used primarily to help estimate the pitch and roll of the reduced IMU system and thus to improve the navigation performance. In this paper, two reduced IMU configurations and two grades of IMUs are investigated using field data. Test results show that the LTP is valid. Specifically, inclusion of the LTP provides more than an 80% horizontal velocity improvement relative to the case when the LTP is not used in a GPS/reduced IMU configuration.Peer Reviewe
    corecore