266 research outputs found

    The search for black hole binaries using a genetic algorithm

    Full text link
    In this work we use genetic algorithm to search for the gravitational wave signal from the inspiralling massive Black Hole binaries in the simulated LISA data. We consider a single signal in the Gaussian instrumental noise. This is a first step in preparation for analysis of the third round of the mock LISA data challenge. We have extended a genetic algorithm utilizing the properties of the signal and the detector response function. The performance of this method is comparable, if not better, to already existing algorithms.Comment: 11 pages, 4 figures, proceeding for GWDAW13 (Puerto Rico

    TDI noises transfer functions for LISA

    Get PDF
    The LISA mission is the future space-based gravitational wave (GW)observatory of the European Space Agency. It is formed by 3 spacecraftexchanging laser beams in order to form multiple real and virtualinterferometers. The data streams to be used in order to extract the largenumber and variety of GW sources are Time-Delay Interferometry (TDI) data. Oneimportant processing to produce these data is the TDI on-ground processingwhich recombines multiple interferometric on-board measurements to removecertain noise sources from the data such as laser frequency noise or spacecraftjitter. The LISA noise budget is therefore expressed at the TDI level in orderto account for the different TDI transfer functions applied for each noisesource and thus estimate their real weight on mission performance. In order toderive a usable form of these transfer functions, a model of the beams, themeasurements, and TDI have been developed, and several approximation have beenmade. A methodology for such a derivation has been established, as well asverification procedures. It results in a set of transfer functions, which arenow used by the LISA project, in particular in its performance model. Usingthese transfer functions, realistic noise curves for various instrumentalconfigurations are provided to data analysis algorithms and used for instrumentdesign.<br

    Facing the LISA Data Analysis Challenge

    Get PDF
    By being the first observatory to survey the source rich low frequency region of the gravitational wave spectrum, the Laser Interferometer Space Antenna (LISA) will revolutionize our understanding of the Cosmos. For the first time we will be able to detect the gravitational radiation from millions of galactic binaries, the coalescence of two massive black holes, and the inspirals of compact objects into massive black holes. The signals from multiple sources in each class, and possibly others as well, will be simultaneously present in the data. To achieve the enormous scientific return possible with LISA, sophisticated data analysis techniques must be developed which can mine the complex data in an effort to isolate and characterize individual signals. This proceedings paper very briefly summarizes the challenges associated with analyzing the LISA data, the current state of affairs, and the necessary next steps to move forward in addressing the imminent challenges.Comment: 4 pages, no figures, Proceedings paper for the TeV Particle Astrophysics II conference held Aug 28-31 at the Univ. of Wisconsi

    Analogies between optical propagation and heat diffusion: applications to microcavities, gratings and cloaks

    Full text link
    International audienceA new analogy between optical propagation and heat diffusion in heterogeneous anisotropic media has beenproposed recently [S. Guenneau, C. Amra, and D. Veynante, Optics Express Vol. 20, 8207-8218 (2012)]. A detailedderivation of this unconventional correspondence is presented and developed. In time harmonic regime, all thermalparameters are related to optical ones in artificial metallic media, thus making possible to use numerical codesdeveloped for optics. Then the optical admittance formalism is extended to heat conduction in multilayeredstructures. The concepts of planar micro-cavities, diffraction gratings, and planar transformation optics for heatconduction are addressed. Results and limitations of the analogy are emphasized

    Inference of the cosmological parameters from gravitational waves: application to second generation interferometers

    Full text link
    The advanced world-wide network of gravitational waves (GW) observatories is scheduled to begin operations within the current decade. Thanks to their improved sensitivity, they promise to yield a number of detections and thus to open a new observational windows for astronomy and astrophysics. Among the scientific goals that should be achieved, there is the independent measurement of the value of the cosmological parameters, hence an independent test of the current cosmological paradigm. Due to the importance of such task, a number of studies have evaluated the capabilities of GW telescopes in this respect. However, since GW do not yield information about the source redshift, different groups have made different assumptions regarding the means through which the GW redshift can be obtained. These different assumptions imply also different methodologies to solve this inference problem. This work presents a formalism based on Bayesian inference developed to facilitate the inclusion of all assumptions and prior information about a GW source within a single data analysis framework. This approach guarantees the minimisation of information loss and the possibility of including naturally event-specific knowledge (such as the sky position for a Gamma Ray Burst - GW coincident observation) in the analysis. The workings of the method are applied to a specific example, loosely designed along the lines of the method proposed by Schutz in 1986, in which one uses information from wide-field galaxy surveys as prior information for the location of a GW source. I show that combining the results from few tens of observations from a network of advanced interferometers will constrain the Hubble constant H0H_0 to an accuracy of 45\sim 4 - 5% at 95% confidence.Comment: 13 pages, 25 figures. Accepted for publication in Phys. Rev.

    On the complementarity of pulsar timing and space laser interferometry for the individual detection of supermassive black hole binaries

    Full text link
    Gravitational waves coming from Super Massive Black Hole Binaries (SMBHBs) are targeted by both Pulsar Timing Array (PTA) and Space Laser Interferometry (SLI). The possibility of a single SMBHB being tracked first by PTA, through inspiral, and later by SLI, up to merger and ring down, has been previously suggested. Although the bounding parameters are drawn by the current PTA or the upcoming Square Kilometer Array (SKA), and by the New Gravitational Observatory (NGO), derived from the Laser Interferometer Space Antenna (LISA), this paper also addresses sequential detection beyond specific project constraints. We consider PTA-SKA, which is sensitive from 10^(-9) to p x 10^(-7) Hz (p=4, 8), and SLI, which operates from s x 10^(-5) up to 1 Hz (s = 1, 3). A SMBHB in the range 2x 10^(8) - 2 x 10^(9) solar masses (the masses are normalised to a (1+z) factor, the red shift lying between z = 0.2 and z=1.5) moves from the PTA-SKA to the SLI band over a period ranging from two months to fifty years. By combining three Super Massive Black Hole (SMBH)-host relations with three accretion prescriptions, nine astrophysical scenarios are formed. They are then related to three levels of pulsar timing residuals (50, 5, 1 ns), generating twenty-seven cases. For residuals of 1 ns, sequential detection probability will never be better than 4.7 x 10^(-4) y^(-2) or 3.3 x 10^(-6) y^(-2) (per year to merger and per year of survey), according to the best and worst astrophysical scenarios, respectively; put differently this means one sequential detection every 46 or 550 years for an equivalent maximum time to merger and duration of the survey. The chances of sequential detection are further reduced by increasing values of the s parameter (they vanish for s = 10) and of the SLI noise, and by decreasing values of the remnant spin. REST OF THE ABSTRACT IN THE PDF FILE.Comment: To appear in the Astrophysical Journa

    The Challenges in Gravitational Wave Astronomy for Space-Based Detectors

    Full text link
    The Gravitational Wave (GW) universe contains a wealth of sources which, with the proper treatment, will open up the universe as never before. By observing massive black hole binaries to high redshifts, we should begin to explore the formation process of seed black holes and track galactic evolution to the present day. Observations of extreme mass ratio inspirals will allow us to explore galactic centers in the local universe, as well as providing tests of General Relativity and constraining the value of Hubble's constant. The detection of compact binaries in our own galaxy may allow us to model stellar evolution in the Milky Way. Finally, the detection of cosmic (super)strings and a stochastic background would help us to constrain cosmological models. However, all of this depends on our ability to not only resolve sources and carry out parameter estimation, but also on our ability to define an optimal data analysis strategy. In this presentation, I will examine the challenges that lie ahead in GW astronomy for the ESA L3 Cosmic Vision mission, eLISA.Comment: 12 pages. Plenary presentation to appear in the Proceedings of the Sant Cugat Forum on Astrophysics, Sant Cugat, April 22-25, 201

    The Mock LISA Data Challenges: from Challenge 3 to Challenge 4

    Full text link
    The Mock LISA Data Challenges are a program to demonstrate LISA data-analysis capabilities and to encourage their development. Each round of challenges consists of one or more datasets containing simulated instrument noise and gravitational waves from sources of undisclosed parameters. Participants analyze the datasets and report best-fit solutions for the source parameters. Here we present the results of the third challenge, issued in Apr 2008, which demonstrated the positive recovery of signals from chirping Galactic binaries, from spinning supermassive--black-hole binaries (with optimal SNRs between ~ 10 and 2000), from simultaneous extreme-mass-ratio inspirals (SNRs of 10-50), from cosmic-string-cusp bursts (SNRs of 10-100), and from a relatively loud isotropic background with Omega_gw(f) ~ 10^-11, slightly below the LISA instrument noise.Comment: 12 pages, 2 figures, proceedings of the 8th Edoardo Amaldi Conference on Gravitational Waves, New York, June 21-26, 200

    The noise properties of 42 millisecond pulsars from the European Pulsar Timing Array and their impact on gravitational wave searches

    Get PDF
    The sensitivity of Pulsar Timing Arrays to gravitational waves depends on the noise present in the individual pulsar timing data. Noise may be either intrinsic or extrinsic to the pulsar. Intrinsic sources of noise will include rotational instabilities, for example. Extrinsic sources of noise include contributions from physical processes which are not sufficiently well modelled, for example, dispersion and scattering effects, analysis errors and instrumental instabilities. We present the results from a noise analysis for 42 millisecond pulsars (MSPs) observed with the European Pulsar Timing Array. For characterising the low-frequency, stochastic and achromatic noise component, or "timing noise", we employ two methods, based on Bayesian and frequentist statistics. For 25 MSPs, we achieve statistically significant measurements of their timing noise parameters and find that the two methods give consistent results. For the remaining 17 MSPs, we place upper limits on the timing noise amplitude at the 95% confidence level. We additionally place an upper limit on the contribution to the pulsar noise budget from errors in the reference terrestrial time standards (below 1%), and we find evidence for a noise component which is present only in the data of one of the four used telescopes. Finally, we estimate that the timing noise of individual pulsars reduces the sensitivity of this data set to an isotropic, stochastic GW background by a factor of >9.1 and by a factor of >2.3 for continuous GWs from resolvable, inspiralling supermassive black-hole binaries with circular orbits.Comment: Accepted for publication by the Monthly Notices of the Royal Astronomical Societ

    Characteristics of Correlated Photon Pairs Generated in Ultra-compact Silicon Slow-light Photonic Crystal Waveguides

    Full text link
    We report the characterization of correlated photon pairs generated in dispersion-engineered silicon slow-light photonic crystal waveguides pumped by picosecond pulses. We found that taking advantage of the 15 nm flat-band slow-light window (vg ~ c/30) the bandwidth for correlated photon-pair generation in 96 and 196 \mum long waveguides was at least 11.2 nm; while a 396 \mum long waveguide reduced the bandwidth to 8 nm (only half of the slow-light bandwidth due to the increased impact of phase matching in a longer waveguide). The key metrics for a photon-pair source: coincidence to accidental ratio (CAR) and pair brightness were measured to be a maximum 33 at a pair generation rate of 0.004 pair per pulse in a 196 \mum long waveguide. Within the measurement errors the maximum CAR achieved in 96, 196 and 396 \mum long waveguides is constant. The noise analysis shows that detector dark counts, leaked pump light, linear and nonlinear losses, multiple pair generation and detector jitter are the limiting factors to the CAR performance of the sources.Comment: 8 pages, 7 figure
    corecore