266 research outputs found
The search for black hole binaries using a genetic algorithm
In this work we use genetic algorithm to search for the gravitational wave
signal from the inspiralling massive Black Hole binaries in the simulated LISA
data. We consider a single signal in the Gaussian instrumental noise. This is a
first step in preparation for analysis of the third round of the mock LISA data
challenge. We have extended a genetic algorithm utilizing the properties of the
signal and the detector response function. The performance of this method is
comparable, if not better, to already existing algorithms.Comment: 11 pages, 4 figures, proceeding for GWDAW13 (Puerto Rico
TDI noises transfer functions for LISA
The LISA mission is the future space-based gravitational wave (GW)observatory of the European Space Agency. It is formed by 3 spacecraftexchanging laser beams in order to form multiple real and virtualinterferometers. The data streams to be used in order to extract the largenumber and variety of GW sources are Time-Delay Interferometry (TDI) data. Oneimportant processing to produce these data is the TDI on-ground processingwhich recombines multiple interferometric on-board measurements to removecertain noise sources from the data such as laser frequency noise or spacecraftjitter. The LISA noise budget is therefore expressed at the TDI level in orderto account for the different TDI transfer functions applied for each noisesource and thus estimate their real weight on mission performance. In order toderive a usable form of these transfer functions, a model of the beams, themeasurements, and TDI have been developed, and several approximation have beenmade. A methodology for such a derivation has been established, as well asverification procedures. It results in a set of transfer functions, which arenow used by the LISA project, in particular in its performance model. Usingthese transfer functions, realistic noise curves for various instrumentalconfigurations are provided to data analysis algorithms and used for instrumentdesign.<br
Facing the LISA Data Analysis Challenge
By being the first observatory to survey the source rich low frequency region
of the gravitational wave spectrum, the Laser Interferometer Space Antenna
(LISA) will revolutionize our understanding of the Cosmos. For the first time
we will be able to detect the gravitational radiation from millions of galactic
binaries, the coalescence of two massive black holes, and the inspirals of
compact objects into massive black holes. The signals from multiple sources in
each class, and possibly others as well, will be simultaneously present in the
data. To achieve the enormous scientific return possible with LISA,
sophisticated data analysis techniques must be developed which can mine the
complex data in an effort to isolate and characterize individual signals. This
proceedings paper very briefly summarizes the challenges associated with
analyzing the LISA data, the current state of affairs, and the necessary next
steps to move forward in addressing the imminent challenges.Comment: 4 pages, no figures, Proceedings paper for the TeV Particle
Astrophysics II conference held Aug 28-31 at the Univ. of Wisconsi
Analogies between optical propagation and heat diffusion: applications to microcavities, gratings and cloaks
International audienceA new analogy between optical propagation and heat diffusion in heterogeneous anisotropic media has beenproposed recently [S. Guenneau, C. Amra, and D. Veynante, Optics Express Vol. 20, 8207-8218 (2012)]. A detailedderivation of this unconventional correspondence is presented and developed. In time harmonic regime, all thermalparameters are related to optical ones in artificial metallic media, thus making possible to use numerical codesdeveloped for optics. Then the optical admittance formalism is extended to heat conduction in multilayeredstructures. The concepts of planar micro-cavities, diffraction gratings, and planar transformation optics for heatconduction are addressed. Results and limitations of the analogy are emphasized
Inference of the cosmological parameters from gravitational waves: application to second generation interferometers
The advanced world-wide network of gravitational waves (GW) observatories is
scheduled to begin operations within the current decade. Thanks to their
improved sensitivity, they promise to yield a number of detections and thus to
open a new observational windows for astronomy and astrophysics. Among the
scientific goals that should be achieved, there is the independent measurement
of the value of the cosmological parameters, hence an independent test of the
current cosmological paradigm. Due to the importance of such task, a number of
studies have evaluated the capabilities of GW telescopes in this respect.
However, since GW do not yield information about the source redshift, different
groups have made different assumptions regarding the means through which the GW
redshift can be obtained. These different assumptions imply also different
methodologies to solve this inference problem. This work presents a formalism
based on Bayesian inference developed to facilitate the inclusion of all
assumptions and prior information about a GW source within a single data
analysis framework. This approach guarantees the minimisation of information
loss and the possibility of including naturally event-specific knowledge (such
as the sky position for a Gamma Ray Burst - GW coincident observation) in the
analysis. The workings of the method are applied to a specific example, loosely
designed along the lines of the method proposed by Schutz in 1986, in which one
uses information from wide-field galaxy surveys as prior information for the
location of a GW source. I show that combining the results from few tens of
observations from a network of advanced interferometers will constrain the
Hubble constant to an accuracy of % at 95% confidence.Comment: 13 pages, 25 figures. Accepted for publication in Phys. Rev.
On the complementarity of pulsar timing and space laser interferometry for the individual detection of supermassive black hole binaries
Gravitational waves coming from Super Massive Black Hole Binaries (SMBHBs)
are targeted by both Pulsar Timing Array (PTA) and Space Laser Interferometry
(SLI). The possibility of a single SMBHB being tracked first by PTA, through
inspiral, and later by SLI, up to merger and ring down, has been previously
suggested. Although the bounding parameters are drawn by the current PTA or the
upcoming Square Kilometer Array (SKA), and by the New Gravitational Observatory
(NGO), derived from the Laser Interferometer Space Antenna (LISA), this paper
also addresses sequential detection beyond specific project constraints. We
consider PTA-SKA, which is sensitive from 10^(-9) to p x 10^(-7) Hz (p=4, 8),
and SLI, which operates from s x 10^(-5) up to 1 Hz (s = 1, 3). A SMBHB in the
range 2x 10^(8) - 2 x 10^(9) solar masses (the masses are normalised to a (1+z)
factor, the red shift lying between z = 0.2 and z=1.5) moves from the PTA-SKA
to the SLI band over a period ranging from two months to fifty years. By
combining three Super Massive Black Hole (SMBH)-host relations with three
accretion prescriptions, nine astrophysical scenarios are formed. They are then
related to three levels of pulsar timing residuals (50, 5, 1 ns), generating
twenty-seven cases. For residuals of 1 ns, sequential detection probability
will never be better than 4.7 x 10^(-4) y^(-2) or 3.3 x 10^(-6) y^(-2) (per
year to merger and per year of survey), according to the best and worst
astrophysical scenarios, respectively; put differently this means one
sequential detection every 46 or 550 years for an equivalent maximum time to
merger and duration of the survey. The chances of sequential detection are
further reduced by increasing values of the s parameter (they vanish for s =
10) and of the SLI noise, and by decreasing values of the remnant spin. REST OF
THE ABSTRACT IN THE PDF FILE.Comment: To appear in the Astrophysical Journa
The Challenges in Gravitational Wave Astronomy for Space-Based Detectors
The Gravitational Wave (GW) universe contains a wealth of sources which, with
the proper treatment, will open up the universe as never before. By observing
massive black hole binaries to high redshifts, we should begin to explore the
formation process of seed black holes and track galactic evolution to the
present day. Observations of extreme mass ratio inspirals will allow us to
explore galactic centers in the local universe, as well as providing tests of
General Relativity and constraining the value of Hubble's constant. The
detection of compact binaries in our own galaxy may allow us to model stellar
evolution in the Milky Way. Finally, the detection of cosmic (super)strings and
a stochastic background would help us to constrain cosmological models.
However, all of this depends on our ability to not only resolve sources and
carry out parameter estimation, but also on our ability to define an optimal
data analysis strategy. In this presentation, I will examine the challenges
that lie ahead in GW astronomy for the ESA L3 Cosmic Vision mission, eLISA.Comment: 12 pages. Plenary presentation to appear in the Proceedings of the
Sant Cugat Forum on Astrophysics, Sant Cugat, April 22-25, 201
The Mock LISA Data Challenges: from Challenge 3 to Challenge 4
The Mock LISA Data Challenges are a program to demonstrate LISA data-analysis
capabilities and to encourage their development. Each round of challenges
consists of one or more datasets containing simulated instrument noise and
gravitational waves from sources of undisclosed parameters. Participants
analyze the datasets and report best-fit solutions for the source parameters.
Here we present the results of the third challenge, issued in Apr 2008, which
demonstrated the positive recovery of signals from chirping Galactic binaries,
from spinning supermassive--black-hole binaries (with optimal SNRs between ~ 10
and 2000), from simultaneous extreme-mass-ratio inspirals (SNRs of 10-50), from
cosmic-string-cusp bursts (SNRs of 10-100), and from a relatively loud
isotropic background with Omega_gw(f) ~ 10^-11, slightly below the LISA
instrument noise.Comment: 12 pages, 2 figures, proceedings of the 8th Edoardo Amaldi Conference
on Gravitational Waves, New York, June 21-26, 200
The noise properties of 42 millisecond pulsars from the European Pulsar Timing Array and their impact on gravitational wave searches
The sensitivity of Pulsar Timing Arrays to gravitational waves depends on the
noise present in the individual pulsar timing data. Noise may be either
intrinsic or extrinsic to the pulsar. Intrinsic sources of noise will include
rotational instabilities, for example. Extrinsic sources of noise include
contributions from physical processes which are not sufficiently well modelled,
for example, dispersion and scattering effects, analysis errors and
instrumental instabilities. We present the results from a noise analysis for 42
millisecond pulsars (MSPs) observed with the European Pulsar Timing Array. For
characterising the low-frequency, stochastic and achromatic noise component, or
"timing noise", we employ two methods, based on Bayesian and frequentist
statistics. For 25 MSPs, we achieve statistically significant measurements of
their timing noise parameters and find that the two methods give consistent
results. For the remaining 17 MSPs, we place upper limits on the timing noise
amplitude at the 95% confidence level. We additionally place an upper limit on
the contribution to the pulsar noise budget from errors in the reference
terrestrial time standards (below 1%), and we find evidence for a noise
component which is present only in the data of one of the four used telescopes.
Finally, we estimate that the timing noise of individual pulsars reduces the
sensitivity of this data set to an isotropic, stochastic GW background by a
factor of >9.1 and by a factor of >2.3 for continuous GWs from resolvable,
inspiralling supermassive black-hole binaries with circular orbits.Comment: Accepted for publication by the Monthly Notices of the Royal
Astronomical Societ
Characteristics of Correlated Photon Pairs Generated in Ultra-compact Silicon Slow-light Photonic Crystal Waveguides
We report the characterization of correlated photon pairs generated in
dispersion-engineered silicon slow-light photonic crystal waveguides pumped by
picosecond pulses. We found that taking advantage of the 15 nm flat-band
slow-light window (vg ~ c/30) the bandwidth for correlated photon-pair
generation in 96 and 196 \mum long waveguides was at least 11.2 nm; while a 396
\mum long waveguide reduced the bandwidth to 8 nm (only half of the slow-light
bandwidth due to the increased impact of phase matching in a longer waveguide).
The key metrics for a photon-pair source: coincidence to accidental ratio (CAR)
and pair brightness were measured to be a maximum 33 at a pair generation rate
of 0.004 pair per pulse in a 196 \mum long waveguide. Within the measurement
errors the maximum CAR achieved in 96, 196 and 396 \mum long waveguides is
constant. The noise analysis shows that detector dark counts, leaked pump
light, linear and nonlinear losses, multiple pair generation and detector
jitter are the limiting factors to the CAR performance of the sources.Comment: 8 pages, 7 figure
- …