69 research outputs found

    Assessing Collegiate Esports Players

    Get PDF
    Little is known about the training habits and supplementation practices by collegiate Esports players. Supplements are widely used in the United States and in 2021 eighty percent of the adult population used dietary supplements (1). Additionally, supplement use is also high among athletes where one meta-analysis in 1994 showed that of the 10,274 male and female athletes surveyed 46% of the college athletes and 59% of the elite athletes used dietary supplements (2). With this information it is interesting to ponder if a similar percentage of college Esports athletes are using supplements. However, to date there has been no investigation into supplementation use by Esports players as these are new programs offered by universities. Additionally, with little to no scientific literature to guide Esport collegiate coaches on programming or prescribing training for teams such as how often to play, game mechanics to train, map study, video analysis, etc. we hope to gain insight into this information. Therefore, we aim distribute a survey to this population to learn and provide the scientific community and public more information about training habits, lifestyle factors, and supplementation practices that are occurring in collegiate Esports players. A survey will be distributed using Qualtrics and sent out to collegiate esports programs

    Changes in Hamstring Muscle Thickness and Pennation Angle Following Nordic Exercise in a Post-Surgical ACL Patient: A Case Study

    Get PDF
    This study aims to utilize ultrasound imaging to investigate the effects of Nordic hamstring exercise on a post-surgical ACL rugby patient who had a hamstring tear in the contralateral leg of his ACL tear. The study will also examine any changes in the patient\u27s ACL leg hamstring compared to the torn hamstring leg. The patient\u27s Biodex test results will also be incorporated to determine if there is a correlation between muscle thickness and pennation angle changes. Ultrasound scans were taken 2 months, 4 months and will be taken again at 6 months post-surgery, following biodex assessments. Ultrasound images have shown an increase in muscle thickness and potential pennation angle changes in the ACL hamstring. While 6-month scans are still pending, the patient has demonstrated an increase in hamstring strength. As the athlete approaches the return-to-sport stage, they intend to continue performing Nordics due to their effectiveness in improving hamstring strength

    Assessment of Muscular Anatomical and Physiological Development During Injury Rehabilitation

    Get PDF
    After an injury occurs, there are many physiological regressions that occur. These regressions lead to altered muscle thickness, muscle length, strength and power potentials, motor recruitment, and neuromuscular control. These variables are further exacerbated if the given injury requires surgical intervention. Rehabilitation aids in reducing these regressions and is important both pre-surgery and post-surgery when intervention beyond rehabilitation is needed. Ultrasound imaging can be utilized to monitor the progression of a muscle\u27s specific muscles anatomy. The muscles of interest are dependent upon the injury, The purpose of this study is to monitor short-term muscular adaptations to establish their importance in injury rehabilitation. A secondary purpose is to determine the importance of monitoring the development of these physiological properties in the return-to-play process. The specific physiological factor of interest in this case study is pennation angle, but multiple will be assessed and analyzed

    Physiological Measurements Pre/Post Ultra-Marathon Distance Race

    Get PDF
    Endurance running events like 100 miles distance races are becoming more popular. Humans are eager to explore their limits by challenging themselves to run 100 miles distance races. However, there are many research gaps still exist to fully understand the impact on the body that 100 miles endurance event has. The aim of this study was to measure and analyze the impact of the 100 miles endurance race among recreational runners. Ten male recreational runners (age 36.6 ± 14.1) were screened before and after completing 100 miles distance running event in Missouri. Test screening included VO2 max, RMR, BIA, Ultrasound of the vastus lateralis muscle, and Muscular strength performance (countermovement jumps (CMJ), bell squats). Overall, 100 miles distance running did not proof to have large impact on the body. The only significant changes were found in intracellular & extracellular body fluids, as well as, braking RDF (rate of force development), and force at peak braking force during CMJ testing

    Assessment of Skeletal Muscle Characteristics in Female Collegiate Cheer Athletes

    Get PDF
    PURPOSE: To examine training modalities and muscle architecture characteristics between legs in collegiate cheer athletes. METHODS: Thirteen female collegiate cheer athletes (19 ± 1 years, 164.3 ± 6.8 cm, 63.0 ± 10.2 kg) were assessed for anthropometrics, a survey to assess type of training outside of cheer practice, and B mode ultrasound on both legs during a single visit. All ultrasound images were analyzed at 50% of the vastus lateralis for muscle thickness (MT), pennation angle (PA), and fascicle length (FL). RESULTS: Type of exercise training outside of practice counts: endurance (2), resistance (2), mixed (6), and do not train (3). We observed the following characters in the right leg (MT: 21.2 ± 2.2 mm, PA: 12.3 ± 2.7 deg, FL: 99.2 ± 27.0 mm) and left leg (MT: 21.1 ± 2.4 mm, PA: 13.2 ± 2.6 deg, FL: 86.2 ± 11.0 mm) with no differences observed between legs p\u3e0.05. CONCLUSION: Given our sample size we observed more athletes performing a mix of endurance and resistance exercise, and no differences between legs for skeletal muscle characteristics

    Absorption kinetics of berberine and dihydroberberine and their impact on glycemia: A randomized, controlled, crossover pilot trial

    Get PDF
    Berberine is a natural alkaloid used to improve glycemia but displays poor bioavailability and increased rates of gastrointestinal distress at higher doses. Recently, dihydroberberine has been developed to combat these challenges. This study was designed to determine the rate and extent to which berberine appeared in human plasma after oral ingestion of a 500 mg dose of berberine (B500) or 100 mg and 200 mg doses of dihydroberberine (D100 and D200). In a randomized, double-blind, crossover fashion, five males (26 ± 2.6 years; 184.2 ± 11.6 cm; 91.8 ± 10.1 kg; 17.1 ± 3.5% fat) completed a four-dose supplementation protocol of placebo (PLA), B500, D100, and D200. The day prior to their scheduled visit, participants ingested three separate doses with breakfast, lunch, and dinner. Participants fasted overnight (8–10 h) and consumed their fourth dose with a standardized test meal (30 g glucose solution, 3 slices white bread) after arrival. Venous blood samples were collected 0, 20, 40, 60, 90, and 120 minutes (min) after ingestion and analyzed for BBR, glucose, and insulin. Peak concentration (CMax) and area under the curve (AUC) were calculated for all variables. Baseline berberine levels were different between groups (p = 0.006), with pairwise comparisons indicating that baseline levels of PLA and B500 were different than D100. Berberine CMax tended to be different (p = 0.06) between all conditions. Specifically, the observed CMax for D100 (3.76 ± 1.4 ng/mL) was different than PLA (0.22 ± 0.18 ng/mL, p = 0.005) and B500 (0.4 ± 0.17 ng/mL, p = 0.005). CMax for D200 (12.0 ± 10.1 ng/mL) tended (p = 0.06) to be different than B500. No difference in CMax was found between D100 and D200 (p = 0.11). Significant differences in berberine AUC were found between D100 (284.4 ± 115.9 ng/mL × 120 min) and PLA (20.2 ± 16.2 ng/mL × 120 min, p = 0.007) and between D100 and B500 (42.3 ± 17.6 ng/mL × 120 min, p = 0.04). Significant differences in D100 BBR AUC (284.4 ± 115.9 ng/mL×120 min) were found between PLA (20.2 ± 16.2 ng/mL × 120 min, p = 0.042) and B500 (42.3 ± 17.6 ng/mL × 120 min, p = 0.045). Berberine AUC values between D100 and D200 tended (p = 0.073) to be different. No significant differences in the levels of glucose (p = 0.97) and insulin (p = 0.24) were observed across the study protocol. These results provide preliminary evidence that four doses of a 100 mg dose of dihydroberberine and 200 mg dose of dihydroberberine produce significantly greater concentrations of plasma berberine across of two-hour measurement window when compared to a 500 mg dose of berberine or a placebo. The lack of observed changes in glucose and insulin were likely due to the short duration of supplementation and insulin responsive nature of study participants. Follow-up efficacy studies on glucose and insulin changes should be completed to assess the impact of berberine and dihydroberberine supplementation in overweight, glucose intolerant populations

    Naturally Bicarbonated Water Supplementation Does Not Improve Anaerobic Cycling Performance or Blood Gas Parameters in Active Men and Women

    Get PDF
    The completion of high-intensity exercise results in robust perturbations to physiologic homeostasis, challenging the body’s natural buffering systems to mitigate the accumulation of metabolic by-products. Supplementation with bicarbonate has previously been used to offset metabolic acidosis, leading to improvements in anaerobic exercise performance. Purpose: The purpose of this study was to investigate the presence of ergogenic properties in naturally occurring low-dose bicarbonated water and their effects on anaerobic cycling performance and blood gas kinetics in recreationally active men and women. Methods: Thirty-nine healthy, recreationally active men and women (28.1 ± 8.0 years, 169.8 ± 11.7 cm, 68.9 ± 10.8 kg, 20.1 ± 7.9% fat, V˙ role= presentation style= box-sizing: border-box; max-height: none; display: inline; line-height: normal; font-size: 13.2px; overflow-wrap: normal; text-wrap: nowrap; float: none; direction: ltr; max-width: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; color: rgb(34, 34, 34); font-family: Arial, Arial, Helvetica, sans-serif; position: relative; \u3eV˙V˙O2peak: 42.8 ± 7.6 mL/kg/min) completed two separate testing sessions consisting of 15 cycling sprints (10 s sprint, 20 s active rest) against 7.5% of their body mass. Using a randomized, double-blind, placebo-controlled, parallel group study design, study participants consumed a 10 mL/kg dose of either spring water (SW) or bicarbonated mineral water (BMW) (delivering ~3 g/day of bicarbonate) for 7 days. Venous blood was collected before, immediately after, and 5 and 10 min after the sprint protocol and was analyzed for lactate and a series of blood gas components. After the completion of 15 cycling sprints, averages of peak and mean power for bouts 1–5, 6–10, and 11–15, along with total work for the entire cycling protocol, were calculated. All performance and blood gas parameters were analyzed using a mixed-factorial ANOVA. Results: pH was found to be significantly higher in the BMW group immediately after (7.17 ± 0.09 vs. 7.20 ± 0.11; p = 0.05) and 10 min post exercise (7.21 ± 0.11 vs. 7.24 ± 0.09; p = 0.04). A similar pattern of change was observed 5 min post exercise wherein pH levels in the SW group were lower than those observed in the BMW group; however, this difference did not achieve statistical significance (p = 0.09). A statistical trend (p = 0.06) was observed wherein lactate in the BMW group tended to be lower than in the SW group 5 min post exercise. No significant main effect for time (p \u3e 0.05) or group × time interactions (p \u3e 0.05) for the total work, average values of peak power, or average values of mean power were observed, indicating performance was unchanged. Conclusion: One week of consuming water with increased bicarbonate (10 mL/kg; ~3 g/day bicarbonate) showed no effect on anaerobic cycling performance. BMW decreased blood lactate concentrations 5 min after exercise and increased blood pH immediately and 10 min after exercise

    Physiological Differences Between Low Versus High Skeletal Muscle Hypertrophic Responders to Resistance Exercise Training: Current Perspectives and Future Research Directions

    Get PDF
    Numerous reports suggest there are low and high skeletal muscle hypertrophic responders following weeks to months of structured resistance exercise training (referred to as low and high responders herein). Specifically, divergent alterations in muscle fiber cross sectional area (fCSA), vastus lateralis thickness, and whole body lean tissue mass have been shown to occur in high versus low responders. Differential responses in ribosome biogenesis and subsequent protein synthetic rates during training seemingly explain some of this individual variation in humans, and mechanistic in vitro and rodent studies provide further evidence that ribosome biogenesis is critical for muscle hypertrophy. High responders may experience a greater increase in satellite cell proliferation during training versus low responders. This phenomenon could serve to maintain an adequate myonuclear domain size or assist in extracellular remodeling to support myofiber growth. High responders may also express a muscle microRNA profile during training that enhances insulin-like growth factor-1 (IGF-1) mRNA expression, although more studies are needed to better validate this mechanism. Higher intramuscular androgen receptor protein content has been reported in high versus low responders following training, and this mechanism may enhance the hypertrophic effects of testosterone during training. While high responders likely possess “good genetics,” such evidence has been confined to single gene candidates which typically share marginal variance with hypertrophic outcomes following training (e.g., different myostatin and IGF-1 alleles). Limited evidence also suggests pre-training muscle fiber type composition and self-reported dietary habits (e.g., calorie and protein intake) do not differ between high versus low responders. Only a handful of studies have examined muscle biomarkers that are differentially expressed between low versus high responders. Thus, other molecular and physiological variables which could potentially affect the skeletal muscle hypertrophic response to resistance exercise training are also discussed including rDNA copy number, extracellular matrix and connective tissue properties, the inflammatory response to training, and mitochondrial as well as vascular characteristics

    Effects of end-stage osteoarthritis on markers of skeletal muscle Long INterspersed Element-1 activity

    Get PDF
    Objective: Long INterspersed Element-1 (L1) is an autonomous transposable element in the genome. L1 transcripts that are not reverse transcribed back into the genome can accumulate in the cytoplasm and activate an inflammatory response via the cyclic GMP-AMP (cGAS)-STING pathway. We examined skeletal muscle L1 markers as well as STING protein levels in 10 older individuals (63 ± 11 y, BMI= 30.2 ± 6.8 kg/m2) with end-stage osteoarthritis (OA) undergoing total hip (THA, n= 4) or knee (TKA, n= 6) arthroplasty versus 10 young, healthy comparators (Y, 22 ± 2 y, BMI= 23.2 ± 2.5 kg/m2). For OA, muscle was collected from surgical (SX) and contralateral (CTL) sides whereas single vastus lateralis samples were collected from Y. Results: L1 mRNA was higher in CTL and SX compared to Y (p \u3c 0.001 and p= 0.001, respectively). Protein expression was higher in SX versus Y for ORF1p (p= 0.002) and STING (p= 0.022). While these data are preliminary due to limited n-sizes and the lack of a BMI-matched younger control group, higher L1 mRNA expression, ORF1p and STING protein are evident in older versus younger adults. More research is needed to determine whether cGAS-STING signaling contributes to heightened muscle inflammation during aging and/or OA

    LAT1 Protein Content Increases Following 12 Weeks of Resistance Exercise Training in Human Skeletal Muscle

    Get PDF
    Introduction: Amino acid transporters are essential for cellular amino acid transport and promoting protein synthesis. While previous literature has demonstrated the association of amino acid transporters and protein synthesis following acute resistance exercise and amino acid supplementation, the chronic effect of resistance exercise and supplementation on amino acid transporters is unknown. The purpose herein was to determine if amino acid transporters and amino acid metabolic enzymes were related to skeletal muscle hypertrophy following resistance exercise training with different nutritional supplementation strategies. Methods: 43 college-aged males were separated into a maltodextrin placebo (PLA, n = 12), leucine (LEU, n = 14), or whey protein concentrate (WPC, n = 17) group and underwent 12 weeks of total-body resistance exercise training. Each group\u27s supplement was standardized for total energy and fat, and LEU and WPC supplements were standardized for total leucine (6 g/d). Skeletal muscle biopsies were obtained prior to training and ~72 h following each subject\u27s last training session. Results: All groups increased type I and II fiber cross-sectional area (fCSA) following training (p \u3c 0.050). LAT1 protein increased following training (p \u3c 0.001) and increased more in PLA than LEU and WPC (p \u3c 0.050). BCKDHα protein increased and ATF4 protein decreased following training (p \u3c 0.001). Immunohistochemistry indicated total LAT1/fiber, but not membrane LAT1/fiber, increased with training (p = 0.003). Utilizing all groups, the change in ATF4 protein, but no other marker, trended to correlate with the change in fCSA (r = 0.314; p = 0.055); however, when regression analysis was used to delineate groups, the change in ATF4 protein best predicted the change in fCSA only in LEU (r2 = 0.322; p = 0.043). In C2C12 myoblasts, LAT1 protein overexpression caused a paradoxical decrease in protein synthesis levels (p = 0.002) and decrease in BCKDHα protein (p = 0.001). Conclusions: Amino acid transporters and metabolic enzymes are affected by resistance exercise training, but do not appear to dictate muscle fiber hypertrophy. In fact, overexpression of LAT1 in vitro decreased protein synthesis
    corecore