27,238 research outputs found
A Variational Approach to the Structure and Thermodynamics of Linear Polyelectrolytes with Coulomb and Screened Coulomb Interactions
A variational approach, based on a discrete representation of the chain, is
used to calculate free energy and conformational properties in
polyelectrolytes. The true bond and Coulomb potentials are approximated by a
trial isotropic harmonic energy containing force constants between {\em
all}monomer-pairs as variational parameters. By a judicious choice of
representation and the use of incremental matrix inversion, an efficient and
fast-convergent iterative algorithm is constructed, that optimizes the free
energy. The computational demand scales as rather than as expected
in a more naive approach. The method has the additional advantage that in
contrast to Monte Carlo calculations the entropy is easily computed. An
analysis of the high and low temperature limits is given. Also, the variational
formulation is shown to respect the appropriate virial identities.The accuracy
of the approximations introduced are tested against Monte Carlo simulations for
problem sizes ranging from to 1024. Very good accuracy is obtained for
chains with unscreened Coulomb interactions. The addition of salt is described
through a screened Coulomb interaction, for which the accuracy in a certain
parameter range turns out to be inferior to the unscreened case. The reason is
that the harmonic variational Ansatz becomes less efficient with shorter range
interactions.
As a by-product a very efficient Monte Carlo algorithm was developed for
comparisons, providing high statistics data for very large sizes -- 2048
monomers. The Monte Carlo results are also used to examine scaling properties,
based on low- approximations to end-end and monomer-monomer separations. It
is argued that the former increases faster than linearly with the number of
bonds.Comment: 40 pages LaTeX, 13 postscript figure
The Electrostatic Persistence Length Calculated from Monte Carlo, Variational and Perturbation Methods
Monte Carlo simulations and variational calculations using a Gaussian ansatz
are applied to a model consisting of a flexible linear polyelectrolyte chain as
well as to an intrinsically stiff chain with up to 1000 charged monomers.
Addition of salt is treated implicitly through a screened Coulomb potential for
the electrostatic interactions.
For the flexible model the electrostatic persistence length shows roughly
three regimes in its dependence on the Debye-H\"{u}ckel screening length,
.As long as the salt content is low and is longer
than the end-to-end distance, the electrostatic persistence length varies only
slowly with . Decreasing the screening length, a controversial
region is entered. We find that the electrostatic persistence length scales as
, in agreement with experiment on flexible
polyelectrolytes, where is a strength parameter measuring the
electrostatic interactions within the polyelectrolyte. For screening lengths
much shorter than the bond length, the dependence becomes
quadratic in the variational calculation. The simulations suffer from numerical
problems in this regime, but seem to give a relationship half-way between
linear and quadratic.
A low temperature expansion only reproduces the first regime and a high
temperature expansion, which treats the electrostatic interactions as a
perturbation to a Gaussian chain, gives a quadratic dependence on the Debye
length.
For a sufficiently stiff chain, the persistence length varies quadratically
with in agreement with earlier theories.Comment: 20 pages LaTeX, 9 postscript figure
A Potts Neuron Approach to Communication Routing
A feedback neural network approach to communication routing problems is
developed with emphasis on Multiple Shortest Path problems, with several
requests for transmissions between distinct start- and endnodes. The basic
ingredients are a set of Potts neurons for each request, with interactions
designed to minimize path lengths and to prevent overloading of network arcs.
The topological nature of the problem is conveniently handled using a
propagator matrix approach. Although the constraints are global, the
algorithmic steps are based entirely on local information, facilitating
distributed implementations. In the polynomially solvable single-request case
the approach reduces to a fuzzy version of the Bellman-Ford algorithm. The
approach is evaluated for synthetic problems of varying sizes and load levels,
by comparing with exact solutions from a branch-and-bound method. With very few
exceptions, the Potts approach gives legal solutions of very high quality. The
computational demand scales merely as the product of the numbers of requests,
nodes, and arcs.Comment: 10 pages LaTe
Random Boolean Network Models and the Yeast Transcriptional Network
The recently measured yeast transcriptional network is analyzed in terms of
simplified Boolean network models, with the aim of determining feasible rule
structures, given the requirement of stable solutions of the generated Boolean
networks. We find that for ensembles of generated models, those with canalyzing
Boolean rules are remarkably stable, whereas those with random Boolean rules
are only marginally stable. Furthermore, substantial parts of the generated
networks are frozen, in the sense that they reach the same state regardless of
initial state. Thus, our ensemble approach suggests that the yeast network
shows highly ordered dynamics.Comment: 23 pages, 5 figure
A Variational Approach for Minimizing Lennard-Jones Energies
A variational method for computing conformational properties of molecules
with Lennard-Jones potentials for the monomer-monomer interactions is
presented. The approach is tailored to deal with angular degrees of freedom,
{\it rotors}, and consists in the iterative solution of a set of deterministic
equations with annealing in temperature. The singular short-distance behaviour
of the Lennard-Jones potential is adiabatically switched on in order to obtain
stable convergence. As testbeds for the approach two distinct ensembles of
molecules are used, characterized by a roughly dense-packed ore a more
elongated ground state. For the latter, problems are generated from natural
frequencies of occurrence of amino acids and phenomenologically determined
potential parameters; they seem to represent less disorder than was previously
assumed in synthetic protein studies. For the dense-packed problems in
particular, the variational algorithm clearly outperforms a gradient descent
method in terms of minimal energies. Although it cannot compete with a careful
simulating annealing algorithm, the variational approach requires only a tiny
fraction of the computer time. Issues and results when applying the method to
polyelectrolytes at a finite temperature are also briefly discussed.Comment: 14 pages, uuencoded compressed postscript fil
Diagnostics of the structure of AGN's broad line regions with reverberation mapping data: confirmation of the two-component broad line region model
We re-examine the ten Reverberation Mapping (RM) sources with public data
based on the two-component model of the Broad Line Region (BLR). In fitting
their broad H-beta lines, six of them only need one Gaussian component, one of
them has a double-peak profile, one has an irregular profile, and only two of
them need two components, i.e., a Very Broad Gaussian Component (VBGC) and an
Inter-Mediate Gaussian Component (IMGC). The Gaussian components are assumed to
come from two distinct regions in the two-component model; they are Very Broad
Line Region (VBLR) and Inter-Mediate Line region (IMLR). The two sources with a
two-component profile are Mrk 509 and NGC 4051. The time lags of the two
components of both sources satisfy ,
where and are the lags of the two components while
and represent the mean gas velocities of the two regions,
supporting the two-component model of the BLR of Active Galactic Nuclei (AGN).
The fact that most of these ten sources only have the VBGC confirms the
assumption that RM mainly measures the radius of the VBLR; consequently, the
radius obtained from the R-L relationship mainly represent the radius of VBLR.
Moreover, NGC 4051, with a lag of about 5 days in the one component model, is
an outlier on the R-L relationship as shown in Kaspi et al. (2005); however
this problem disappears in our two-component model with lags of about 2 and 6
days for the VBGC and IMGC, respectively.Comment: 7 pages, 5 figures. Accepted for publication in the Special Issue of
Science in China (G) "Astrophysics of Black holes and Related Compact
Objects
- …