82 research outputs found
The Acinetobacter baumannii two-component system aders regulates genes required for multidrug efflux, biofilm formation, and virulence in a strain-specific manner
The opportunistic pathogen Acinetobacter baumannii is able to persist in the environment and is often multidrug resistant (MDR), causing difficulties in the treatment of infections. Here, we show that the two-component system AdeRS, which regulates the production of the AdeABC multidrug resistance efflux pump, is required for the formation of a protective biofilm in an ex vivo porcine mucosal model, which mimics a natural infection of the human epithelium. Interestingly, deletion of adeB impacted only on the ability of strain AYE to form a biofilm on plastic and only on the virulence of strain Singapore 1 for Galleria mellonella. RNA-Seq revealed that loss of AdeRS or AdeB significantly altered the transcriptional landscape, resulting in the changed expression of many genes, notably those associated with antimicrobial resistance and virulence interactions. For example, A. baumannii lacking AdeRS displayed decreased expression of adeABC, pil genes, com genes, and a pgaC-like gene, whereas loss of AdeB resulted in increased expression of pil and com genes and decreased expression of ferric acinetobactin transport system genes. These data define the scope of AdeRS-mediated regulation, show that changes in the production of AdeABC mediate important phenotypes controlled by AdeRS, and suggest that AdeABC is a viable target for antimicrobial drug and antibiofilm discovery. IMPORTANCE Acinetobacter baumannii is a nosocomial pathogen and is an increasing problem in hospitals worldwide. This organism is often multidrug resistant, can persist in the environment, and forms a biofilm on environmental surfaces and wounds. Overproduction of efflux pumps can allow specific toxic compounds to be pumped out of the cell and can lead to multidrug resistance. This study demonstrates the role of the A. baumannii efflux pump AdeB, and its regulator AdeRS, in multidrug resistance, epithelial cell killing, and biofilm formation. Deletion of the genes encoding these systems led to increased susceptibility to antibiotics, decreased biofilm formation on biotic and abiotic surfaces, and decreased virulence. Our data suggest that inhibition of AdeB could prevent biofilm formation or colonization in patients by A. baumannii and provides a good target for drug discovery
Glycerol monolaurate prevents mucosal SIV transmission
Although there has been great progress in treating human immunodeficiency virus 1 (HIV-1) infection1, preventing transmission has thus far proven an elusive goal. Indeed, recent trials of a candidate vaccine and microbicide have been disappointing, both for want of efficacy and concerns about increased rates of transmission2–4. Nonetheless, studies of vaginal transmission in the simian immunodeficiency virus (SIV)–rhesus macaque (Macacca mulatta) model point to opportunities at the earliest stages of infection in which a vaccine or microbicide might be protective, by limiting the expansion of infected founder populations at the portal of entry5,6. Here we show in this SIV–macaque model, that an outside-in endocervical mucosal signalling system, involving MIP-3α (also known as CCL20), plasmacytoid dendritic cells and CCR5+ cell-attracting chemokines produced by these cells, in combination with the innate immune and inflammatory responses to infection in both cervix and vagina, recruits CD4+ T cells to fuel this obligate expansion. We then show that glycerol monolaurate—a widely used antimicrobial compound7with inhibitory activity against the production of MIP-3α and other proinflammatory cytokines8—can inhibit mucosal signalling and the innate and inflammatory response to HIV-1 and SIV in vitro, and in vivo it can protect rhesus macaques from acute infection despite repeated intra-vaginal exposure to high doses of SIV. This new approach, plausibly linked to interfering with innate host responses that recruit the target cells necessary to establish systemic infection, opens a promising new avenue for the development of effective interventions to blockHIV-1 mucosal transmission
Enterococcus faecalis Endocarditis Severity in Rabbits Is Reduced by IgG Fabs Interfering with Aggregation Substance
Background: Enterococcus faecalis is a significant cause of infective endocarditis, an infection of the heart endothelium leading to vegetation formation (microbes, fibrin, platelets, and host cells attached to underlying endothelial tissue). Our previous research determined that enterococcal aggregation substance (AS) is an important virulence factor in causation of endocarditis, although endocarditis may occur in the absence of AS production. Production of AS by E. faecalis causes the organism to form aggregates through AS binding to enterococcal binding substance. In this study, we assessed the ability of IgGs and IgG Fabs against AS to provide protection against AS + E. faecalis endocarditis. Methodology/Principal Findings: When challenged with AS + E. faecalis, 10 rabbits actively immunized against AS + E. faecalis developed more significant vegetations than 9 animals immunized against AS 2 E. faecalis, and 9/10 succumbed compared to 2/9 (p,0.005), suggesting enhanced aggregation by IgG contributes significantly to disease. IgG antibodies against AS also enhanced enterococcal aggregation as tested in vitro. In contrast, Fab fragments of IgG from rabbits immunized against purified AS, when passively administered to rabbits (6/group) immediately before challenge with AS + E. faecalis, reduced total vegetation (endocarditis lesion) microbial counts (7.9610 6 versus 2.0610 5, p = 0.02) and size (40 mg versus 10, p = 0.05). In vitro, the Fabs prevented enterococcal aggregation. Conclusions/Significance: The data confirm the role of AS in infective endocarditis formation and suggest that use of Fab
Glycerol monolaurate prevents mucosal SIV transmission
Although there has been great progress in treating human immunodeficiency virus 1 (HIV-1) infection1, preventing transmission has thus far proven an elusive goal. Indeed, recent trials of a candidate vaccine and microbicide have been disappointing, both for want of efficacy and concerns about increased rates of transmission2–4. Nonetheless, studies of vaginal transmission in the simian immunodeficiency virus (SIV)–rhesus macaque (Macacca mulatta) model point to opportunities at the earliest stages of infection in which a vaccine or microbicide might be protective, by limiting the expansion of infected founder populations at the portal of entry5,6. Here we show in this SIV–macaque model, that an outside-in endocervical mucosal signalling system, involving MIP-3α (also known as CCL20), plasmacytoid dendritic cells and CCR5+ cell-attracting chemokines produced by these cells, in combination with the innate immune and inflammatory responses to infection in both cervix and vagina, recruits CD4+ T cells to fuel this obligate expansion. We then show that glycerol monolaurate—a widely used antimicrobial compound7with inhibitory activity against the production of MIP-3α and other proinflammatory cytokines8—can inhibit mucosal signalling and the innate and inflammatory response to HIV-1 and SIV in vitro, and in vivo it can protect rhesus macaques from acute infection despite repeated intra-vaginal exposure to high doses of SIV. This new approach, plausibly linked to interfering with innate host responses that recruit the target cells necessary to establish systemic infection, opens a promising new avenue for the development of effective interventions to blockHIV-1 mucosal transmission
Epithelial Proinflammatory Response and Curcumin-Mediated Protection from Staphylococcal Toxic Shock Syndrome Toxin-1
Staphylococcus aureus initiates infections and produces virulence factors, including superantigens (SAgs), at mucosal surfaces. The SAg, Toxic Shock Syndrome Toxin-1 (TSST-1) induces cytokine secretion from epithelial cells, antigen presenting cells (APCs) and T lymphocytes, and causes toxic shock syndrome (TSS). This study investigated the mechanism of TSST-1-induced secretion of proinflammatory cytokines from human vaginal epithelial cells (HVECs) and determined if curcumin, an anti-inflammatory agent, could reduce TSST-1-mediated pathology in a rabbit vaginal model of TSS. TSST-1 caused a significant increase in NF-κB-dependent transcription in HVECs that was associated with increased expression of TNF- α, MIP-3α, IL-6 and IL-8. Curcumin, an antagonist of NF-κB-dependent transcription, inhibited IL-8 production from ex vivo porcine vaginal explants at nontoxic doses. In a rabbit model of TSS, co-administration of curcumin with TSST-1 intravaginally reduced lethality by 60% relative to 100% lethality in rabbits receiving TSST-1 alone. In addition, TNF-α was undetectable from serum or vaginal tissue of curcumin treated rabbits that survived. These data suggest that the inflammatory response induced at the mucosal surface by TSST-1 is NF-κB dependent. In addition, the ability of curcumin to prevent TSS in vivo by co-administration with TSST-1 intravaginally suggests that the vaginal mucosal proinflammatory response to TSST-1 is important in the progression of mTSS
Glycerol Monolaurate and Dodecylglycerol Effects on Staphylococcus aureus and Toxic Shock Syndrome Toxin-1 In Vitro and In Vivo
BACKGROUND:Glycerol monolaurate (GML), a 12 carbon fatty acid monoester, inhibits Staphylococcus aureus growth and exotoxin production, but is degraded by S. aureus lipase. Therefore, dodecylglycerol (DDG), a 12 carbon fatty acid monoether, was compared in vitro and in vivo to GML for its effects on S. aureus growth, exotoxin production, and stability. METHODOLOGY/PRINCIPAL FINDINGS:Antimicrobial effects of GML and DDG (0 to 500 microg/ml) on 54 clinical isolates of S. aureus, including pulsed-field gel electrophoresis (PFGE) types USA200, USA300, and USA400, were determined in vitro. A rabbit Wiffle ball infection model assessed GML and DDG (1 mg/ml instilled into the Wiffle ball every other day) effects on S. aureus (MN8) growth (inoculum 3x10(8) CFU/ml), toxic shock syndrome toxin-1 (TSST-1) production, tumor necrosis factor-alpha (TNF-alpha) concentrations and mortality over 7 days. DDG (50 and 100 microg/ml) inhibited S. aureus growth in vitro more effectively than GML (p<0.01) and was stable to lipase degradation. Unlike GML, DDG inhibition of TSST-1 was dependent on S. aureus growth. GML-treated (4 of 5; 80%) and DDG-treated rabbits (2 of 5; 40%) survived after 7 days. Control rabbits (5 of 5; 100%) succumbed by day 4. GML suppressed TNF-alpha at the infection site on day 7; however, DDG did not (<10 ng/ml versus 80 ng/ml, respectively). CONCLUSIONS/SIGNIFICANCE:These data suggest that DDG was stable to S. aureus lipase and inhibited S. aureus growth at lower concentrations than GML in vitro. However, in vivo GML was more effective than DDG by reducing mortality, and suppressing TNF-alpha, S. aureus growth and exotoxin production, which may reduce toxic shock syndrome. GML is proposed as a more effective anti-staphylococcal topical anti-infective candidate than DDG, despite its potential degradation by S. aureus lipase
Proceedings of the 3rd Biennial Conference of the Society for Implementation Research Collaboration (SIRC) 2015: advancing efficient methodologies through community partnerships and team science
It is well documented that the majority of adults, children and families in need of evidence-based behavioral health interventionsi do not receive them [1, 2] and that few robust empirically supported methods for implementing evidence-based practices (EBPs) exist. The Society for Implementation Research Collaboration (SIRC) represents a burgeoning effort to advance the innovation and rigor of implementation research and is uniquely focused on bringing together researchers and stakeholders committed to evaluating the implementation of complex evidence-based behavioral health interventions. Through its diverse activities and membership, SIRC aims to foster the promise of implementation research to better serve the behavioral health needs of the population by identifying rigorous, relevant, and efficient strategies that successfully transfer scientific evidence to clinical knowledge for use in real world settings [3]. SIRC began as a National Institute of Mental Health (NIMH)-funded conference series in 2010 (previously titled the “Seattle Implementation Research Conference”; $150,000 USD for 3 conferences in 2011, 2013, and 2015) with the recognition that there were multiple researchers and stakeholdersi working in parallel on innovative implementation science projects in behavioral health, but that formal channels for communicating and collaborating with one another were relatively unavailable. There was a significant need for a forum within which implementation researchers and stakeholders could learn from one another, refine approaches to science and practice, and develop an implementation research agenda using common measures, methods, and research principles to improve both the frequency and quality with which behavioral health treatment implementation is evaluated. SIRC’s membership growth is a testament to this identified need with more than 1000 members from 2011 to the present.ii SIRC’s primary objectives are to: (1) foster communication and collaboration across diverse groups, including implementation researchers, intermediariesi, as well as community stakeholders (SIRC uses the term “EBP champions” for these groups) – and to do so across multiple career levels (e.g., students, early career faculty, established investigators); and (2) enhance and disseminate rigorous measures and methodologies for implementing EBPs and evaluating EBP implementation efforts. These objectives are well aligned with Glasgow and colleagues’ [4] five core tenets deemed critical for advancing implementation science: collaboration, efficiency and speed, rigor and relevance, improved capacity, and cumulative knowledge. SIRC advances these objectives and tenets through in-person conferences, which bring together multidisciplinary implementation researchers and those implementing evidence-based behavioral health interventions in the community to share their work and create professional connections and collaborations
The role of pharmacodynamics and topoisomerase genes in the resistance of Bacteroides fragilis to fluoroquinolones
EThOS - Electronic Theses Online ServiceGBUnited Kingdo
Glycerol monolaurate antibacterial activity in broth and biofilm cultures.
Glycerol monolaurate (GML) is an antimicrobial agent that has potent activity against gram-positive bacteria. This study examines GML antibacterial activity in comparison to lauric acid, in broth cultures compared to biofilm cultures, and against a wide range of gram-positive, gram-negative, and non-gram staining bacteria.GML is ≥ 200 times more effective than lauric acid in bactericidal activity, defined as a ≥ 3 log reduction in colony-forming units (CFU)/ml, against Staphylococcus aureus and Streptococcus pyogenes in broth cultures. Both molecules inhibit superantigen production by these organisms at concentrations that are not bactericidal. GML prevents biofilm formation by Staphylococcus aureus and Haemophilus influenzae, as representative gram-positive and gram-negative organisms, tested in 96 well microtiter plates, and simultaneously is bactericidal for both organisms in mature biofilms. GML is bactericidal for a wide range of potential bacterial pathogens, except for Pseudomonas aeruginosa and Enterobacteriaceae. In the presence of acidic pH and the cation chelator ethylene diamine tetraacetic acid, GML has greatly enhanced bactericidal activity for Pseudomonas aeruginosa and Enterobacteriaceae. Solubilization of GML in a nonaqueous delivery vehicle (related to K-Y Warming®) enhances its bactericidal activity against S. aureus. Both R and S, and 1 and 2 position lauric acid derivatives of GML exhibit bactericidal activity. Despite year-long passage of Staphylococcus aureus on sub-growth inhibitory concentrations of GML (0.5 x minimum bactericidal concentration), resistance to GML did not develop.GML may be useful as a broad-spectrum human or animal topical microbicide and may be useful as an environmental surface microbicide for management of bacterial infections and contamination
- …