14,616 research outputs found

    Quantum Hall Phase Diagram of Second Landau-level Half-filled Bilayers: Abelian versus Non-Abelian States

    Full text link
    The quantum Hall phase diagram of the half-filled bilayer system in the second Landau level is studied as a function of tunneling and layer separation using exact diagonalization. We make the striking prediction that bilayer structures would manifest two distinct branches of incompressible fractional quantum Hall effect (FQHE) corresponding to the Abelian 331 state (at moderate to low tunneling and large layer separation) and the non-Abelian Pfaffian state (at large tunneling and small layer separation). The observation of these two FQHE branches and the quantum phase transition between them will be compelling evidence supporting the existence of the non-Abelian Pfaffian state in the second Landau level.Comment: 4 pages, 3 figure

    Orbital Landau level dependence of the fractional quantum Hall effect in quasi-two dimensional electron layers: finite-thickness effects

    Full text link
    The fractional quantum Hall effect (FQHE) in the second orbital Landau level at filling factor 5/2 remains enigmatic and motivates our work. We consider the effect of the quasi-2D nature of the experimental FQH system on a number of FQH states (fillings 1/3, 1/5, 1/2) in the lowest, second, and third Landau levels (LLL, SLL, TLL,) by calculating the overlap, as a function of quasi-2D layer thickness, between the exact ground state of a model Hamiltonian and the consensus variational wavefunctions (Laughlin wavefunction for 1/3 and 1/5 and the Moore-Read Pfaffian wavefunction for 1/2). Using large overlap as a stability, or FQHE robustness, criterion we find the FQHE does not occur in the TLL (for any thickness), is the most robust for zero thickness in the LLL for 1/3 and 1/5 and for 11/5 in the SLL, and is most robust at finite-thickness (4-5 magnetic lengths) in the SLL for the mysterious 5/2 state and the 7/3 state. No FQHE is found at 1/2 in the LLL for any thickness. We examine the orbital effects of an in-plane (parallel) magnetic field finding its application effectively reduces the thickness and could destroy the FQHE at 5/2 and 7/3, while enhancing it at 11/5 as well as for LLL FQHE states. The in-plane field effects could thus be qualitatively different in the LLL and the SLL by virtue of magneto-orbital coupling through the finite thickness effect. In the torus geometry, we show the appearance of the threefold topological degeneracy expected for the Pfaffian state which is enhanced by thickness corroborating our findings from overlap calculations. Our results have ramifications for wavefunction engineering--the possibility of creating an optimal experimental system where the 5/2 FQHE state is more likely described by the Pfaffian state with applications to topological quantum computing.Comment: 27 pages, 20 figures, revised version (with additional author) as accepted for publication in Physical Review

    Subband Engineering Even-Denominator Quantum Hall States

    Full text link
    Proposed even-denominator fractional quantum Hall effect (FQHE) states suggest the possibility of excitations with non-Abelian braid statistics. Recent experiments on wide square quantum wells observe even-denominator FQHE even under electrostatic tilt. We theoretically analyze these structures and develop a procedure to accurately test proposed quantum Hall wavefunctions. We find that tilted wells favor partial subband polarization to yield Abelian even-denominator states. Our results show that tilting quantum wells effectively engineers different interaction potentials allowing exploration of a wide variety of even-denominator states

    Fractional quantum Hall effects in bilayers in the presence of inter-layer tunneling and charge imbalance

    Full text link
    Two-component fractional quantum Hall systems are providing a major motivation for a large section of the physics community. Here we study two-component fractional quantum Hall systems in the spin-polarized half-filled lowest Landau level (filling factor 1/2) and second Landau level (filling factor 5/2) with exact diagonalization utilizing both the spherical and torus geometries. The two distinct two-component systems we consider are the true bilayer and effective bilayers (wide-quantum-well). In each model (bilayer and wide-quantum-well) we completely take into account inter-layer tunneling and charge imbalancing terms. We find that in the half-filled lowest Landau level, the FQHE is described by the two-component Abelian Halperin 331 state which is remarkably robust to charge imbalancing. In the half-filled second Landau, we find that the FQHE is likely described by the non-Abelian Moore-Read Pfaffian state which is also quite robust to charge imbalancing. Furthermore, we suggest the possibility of experimentally tuning from an Abelian to non-Abelian FQHE state in the second Landau level, and comment on recent experimental studies of FQHE in wide quantum well structures.Comment: 25 pages, 27 figure

    Brownian dynamics around the core of self-gravitating systems

    Full text link
    We derive the non-Maxwellian distribution of self-gravitating NN-body systems around the core by a model based on the random process with the additive and the multiplicative noise. The number density can be obtained through the steady state solution of the Fokker-Planck equation corresponding to the random process. We exhibit that the number density becomes equal to that of the King model around the core by adjusting the friction coefficient and the intensity of the multiplicative noise. We also show that our model can be applied in the system which has a heavier particle. Moreover, we confirm the validity of our model by comparing with our numerical simulation.Comment: 11 pages, 4 figure

    First limits on the 3-200 keV X-ray spectrum of the quiet Sun using RHESSI

    Full text link
    We present the first results using the Reuven Ramaty High-Energy Solar Spectroscopic Imager, RHESSI, to observe solar X-ray emission not associated with active regions, sunspots or flares (the quiet Sun). Using a newly developed chopping technique (fan-beam modulation) during seven periods of offpointing between June 2005 to October 2006, we obtained upper limits over 3-200 keV for the quietest times when the GOES12 1-8A flux fell below 10810^{-8} Wm2^{-2}. These values are smaller than previous limits in the 17-120 keV range and extend them to both lower and higher energies. The limit in 3-6 keV is consistent with a coronal temperature 6\leq 6 MK. For quiet Sun periods when the GOES12 1-8A background flux was between 10810^{-8} Wm2^{-2} and 10710^{-7} Wm2^{-2}, the RHESSI 3-6 keV flux correlates to this as a power-law, with an index of 1.08±0.131.08 \pm 0.13. The power-law correlation for microflares has a steeper index of 1.29±0.061.29 \pm 0.06. We also discuss the possibility of observing quiet Sun X-rays due to solar axions and use the RHESSI quiet Sun limits to estimate the axion-to-photon coupling constant for two different axion emission scenarios.Comment: 4 pages, 3 figures, Accepted by ApJ letter

    Reverberation Mapping and the Physics of Active Galactic Nuclei

    Get PDF
    Reverberation-mapping campaigns have revolutionized our understanding of AGN. They have allowed the direct determination of the broad-line region size, enabled mapping of the gas distribution around the central black hole, and are starting to resolve the continuum source structure. This review describes the recent and successful campaigns of the International AGN Watch consortium, outlines the theoretical background of reverberation mapping and the calculation of transfer functions, and addresses the fundamental difficulties of such experiments. It shows that such large-scale experiments have resulted in a ``new BLR'' which is considerably different from the one we knew just ten years ago. We discuss in some detail the more important new results, including the luminosity-size-mass relationship for AGN, and suggest ways to proceed in the near future.Comment: Review article to appear in Astronomical Time Series, Proceedings of the Wise Observatory 25th Ann. Symposium. 24 pages including 7 figure

    A performance comparison of the contiguous allocation strategies in 3D mesh connected multicomputers

    Get PDF
    The performance of contiguous allocation strategies can be significantly affected by the distribution of job execution times. In this paper, the performance of the existing contiguous allocation strategies for 3D mesh multicomputers is re-visited in the context of heavy-tailed distributions (e.g., a Bounded Pareto distribution). The strategies are evaluated and compared using simulation experiments for both First-Come-First-Served (FCFS) and Shortest-Service-Demand (SSD) scheduling strategies under a variety of system loads and system sizes. The results show that the performance of the allocation strategies degrades considerably when job execution times follow a heavy-tailed distribution. Moreover, SSD copes much better than FCFS scheduling strategy in the presence of heavy-tailed job execution times. The results also show that the strategies that depend on a list of allocated sub-meshes for both allocation and deallocation have lower allocation overhead and deliver good system performance in terms of average turnaround time and mean system utilization
    corecore