368 research outputs found

    The astronomer, the software engineer, and the cloud

    Get PDF
    We are in the midst of a transition in the way that computing resources are obtained in the sciences. Cloud-based architectures play an increasing role in scientific processing as well as scientific communication, leveraging the considerable technical investment in these platforms. Typically astronomers have believed that the economics drive them away from this model, however these calculations often fall short of the total cost of delivering computing infrastructure. Moreover there is often a false dichotomy between commercial cloud services (like Amazon Web Services) and traditional bare-metal “special snowflake” hardware; privately deployed clouds (such as university OpenStack clusters) represent a path forward with many of the technological advantages of working in an open standardized infrastructure while avoiding some of the direct costs of the commercial clouds. Here we describe how we have navigated some of these issues in the context of engineering the LSST Data Management’s developer infrastructure, which includes a cross-platform cloud-based continuous integration architecture

    The bolometric luminosity of type 2 AGN from extinction-corrected [OIII]: no evidence for Eddington-limited sources

    Get PDF
    There have been recent claims that a significant fraction of type 2 AGN accrete close or even above the Eddington limit. In type 2 AGN the bolometric luminosity (L_b) is generally inferred from the [OIII] emission line luminosity (L_OIII). The key issue, in order to estimate the bolometric luminosity in these AGN, is therefore to know the bolometric correction to be applied to L_OIII. A complication arises from the fact that the observed L_OIII is affected by extinction, likely due to dust within the narrow line region. The extinction-corrected [OIII] luminosity (L^c_OIII) is a better estimator of the nuclear luminosity than L_OIII. However, so far only the bolometric correction to be applied to the uncorrected L_OIII has been evaluated. This paper is devoted to estimate the bolometric correction C_OIII=L_b/L^c_OIII in order to derive the Eddington ratios for the type 2 AGN in a sample of SDSS objects. We have collected from the literature 61 sources with reliable estimate of both L^c_OIII and X-ray luminosities (L_X). To estimate C_OIII, we combined the observed correlation between L^c_OIII and L_X with the X-ray bolometric correction. We found, contrary to previous studies, a linear correlation between L^c_OIII and L_X. We estimated C_OIII using the luminosity-dependent X-ray bolometric correction of Marconi et al. (2004), and we found a mean value of C_OIII in the luminosity ranges log L_OIII=38-40, 40-42, and 42-44 of 87, 142 and 454 respectively. We used it to calculate the Eddington ratio distribution of type 2 SDSS AGN at 0.3<z<0.4 and we found that these sources are not accreting near their Eddington limit, contrary to previous claims.Comment: 8 pages, 4 figures, accepted for publication in Astronomy and Astrophysic

    Physical Conditions of Accreting Gas in T Tauri Star Systems

    Full text link
    We present results from a low resolution (R~300) near-infrared spectroscopic variability survey of actively accreting T Tauri stars (TTS) in the Taurus-Auriga star forming region. Paschen and Brackett series H I recombination lines were detected in 73 spectra of 15 classical T Tauri systems. The values of the Pan/PaB, Brn/BrG, and BrG/Pan H I line ratios for all observations exhibit a scatter of < 20% about the weighted mean, not only from source to source, but also for epoch-to-epoch variations in the same source. A representative or `global' value was determined for each ratio in both the Paschen and Brackett series as well as the BrG/Pan line ratios. A comparison of observed line ratio values was made to those predicted by the temperature and electron density dependent models of Case B hydrogen recombination line theory. The measured line ratios are statistically well-fit by a tightly constrained range of temperatures (T < 2000 K) and electron densities 1e9 < n_e < 1e10 cm^-3. A comparison of the observed line ratio values to the values predicted by the optically thick and thin local thermodynamic equilibrium cases rules out these conditions for the emitting H I gas. Therefore, the emission is consistent with having an origin in a non-LTE recombining gas. While the range of electron densities is consistent with the gas densities predicted by existing magnetospheric accretion models, the temperature range constrained by the Case B comparison is considerably lower than that expected for accreting gas. The cooler gas temperatures will require a non-thermal excitation process (e.g., coronal/accretion-related X-rays and UV photons) to power the observed line emission.Comment: 12 pages, emulateapj format, Accepted for publication in Ap

    River export of nutrients and organic matter from the North Slope of Alaska to the Beaufort Sea

    Get PDF
    Author Posting. © American Geophysical Union, 2014. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Water Resources Research 50 (2014): 1823–1839, doi:10.1002/2013WR014722.While river-borne materials are recognized as important resources supporting coastal ecosystems around the world, estimates of river export from the North Slope of Alaska have been limited by a scarcity of water chemistry and river discharge data. This paper quantifies water, nutrient, and organic matter export from the three largest rivers (Sagavanirktok, Kuparuk, and Colville) that drain Alaska's North Slope and discusses the potential importance of river inputs for biological production in coastal waters of the Alaskan Beaufort Sea. Together these rivers export ∌297,000 metric tons of organic carbon and ∌18,000 metric tons of organic nitrogen each year. Annual fluxes of nitrate-N, ammonium-N, and soluble reactive phosphorus are approximately 1750, 200, and 140 metric tons per year, respectively. Constituent export from Alaska's North Slope is dominated by the Colville River. This is in part due to its larger size, but also because constituent yields are greater in the Colville watershed. River-supplied nitrogen may be more important to productivity along the Alaskan Beaufort Sea coast than previously thought. However, given the dominance of organic nitrogen export, the potential role of river-supplied nitrogen in support of primary production depends strongly on remineralization mechanisms. Although rivers draining the North Slope of Alaska make only a small contribution to overall river export from the pan-arctic watershed, comparisons with major arctic rivers reveal unique regional characteristics as well as remarkable similarities among different regions and scales. Such information is crucial for development of robust river export models that represent the arctic system as a whole.Funding for this project was provided by a grant from the National Science Foundation Office of Polar Programs (NSF-OPP-0436118) as part of the Arctic System Science (ARCSS) Study of the Northern Alaska Coastal System (SNACS) effort.2014-08-2

    The warm absorber in NGC 5548: The lean years

    Full text link
    We study the variability of the warm absorber and the gas responsible for the emission lines in the Seyfert 1 galaxy NGC 5548, in order to constrain the location and physical properties of these components. Using X-ray spectra taken with the \textit{Chandra}−-LETGS in 2002 and 2005, we study variability in the ionic column densities and line intensities. We find a lower \ion{O}{vii} forbidden emission line flux in 2005, while the Fe Kα\alpha line flux stays constant. The warm absorber is less ionized in 2005, allowing us to constrain its location to within 7 pc of the central source. Using both the observed variability and the limit on the FWHM of the \ion{O}{vii} f line, we have constrained the location of the narrow line region to a distance of 1 pc from the central source. The apparent lack of variability of the Fe Kα \alpha line flux does not allow for a unique explanation.Comment: 6 pages, 6 figures, accepted by A&

    A Correlation Between the Ionization State of the Inner Accretion Disk and the Eddington Ratio of Active Galactic Nuclei

    Full text link
    X-ray reflection features observed from the innermost regions of accretion disks in Active Galactic Nuclei (AGNs) allow important tests of accretion theory. In recent years it has been possible to use the Fe K line and reflection continuum to parametrize the ionization state of the irradiated inner accretion disk. Here, we collect 10 measurements of xi, the disk ionization parameter, from 8 AGNs with strong evidence for reflection from the inner accretion disk and good black hole mass estimates. We find strong statistical evidence (98.56% confidence) for a nearly linear correlation between xi and the AGN Eddington ratio. Moreover, such a correlation is predicted by a simple application of alpha-disk accretion theory, albeit with a stronger dependence on the Eddington ratio. The theory shows that there will be intrinsic scatter to any correlation as a result of different black hole spins and radii of reflection. There are several possibilities to soften the predicted dependence on the Eddington ratio to allow a closer agreement with the observed correlation, but the current data does not allow for an unique explanation. The correlation can be used to estimate that MCG-6-30-15 should have a highly ionized inner accretion disk, which would imply a black hole spin of ~0.8. Additional measurements of xi from a larger sample of AGNs are needed to confirm the existence of this correlation, and will allow investigation of the accretion disk/corona interaction in the inner regions of accretion disks.Comment: 21 pages, 2 figures, accepted by Ap

    Variable partial covering and a relativistic iron line in NGC 1365

    Full text link
    We present a complete analysis of the hard X-ray (2-10 keV) properties of the Seyfert galaxy NGC 1365, based on a 60 ks XMM-Newton observation performed in January 2004. The two main results are: 1) We detect an obscuring cloud with N_H~3.5x10^23 cm^(-2) crossing the line of sight in ~25 ks. This implies a dimension of the X-ray source not larger than a few 10^13 cm and a distance of the obscuring cloud of the order of 10^16 cm. Adopting the black hole mass M(BH) estimated from the M(BH)-velocity dispersion relation, the source size is D_S<20 R_G and the distance and density of the obscuring clouds are R~3000-10000 R_G and n~10^(10) cm^(-3), i.e. typical values for broad line region clouds. 2) An iron emission line with a relativistic profile is detected with high statistical significance. A time integrated fit of the line+continuum reflection components suggests a high iron abundance (~3 times solar) and an origin of these components in the inner part (~10 R_G) of the accretion disk, in agreement with the small source size inferred from the analysis of the absorption variability.Comment: 31 pages, 8 figs. Accepted for publication in the Astrophysical Journa

    Multiwavelength Monitoring of the Narrow-Line Seyfert 1 Galaxy Akn 564. I. ASCA Observations and the Variability of the X-ray Spectral Components

    Full text link
    We present a 35 day ASCA observation of the NLS1 Akn 564, which was part of a multiwavelength AGN Watch monitoring campaign. Akn 564 shows a photon index varying across the range 2.45--2.72. The presence of the soft hump component below 1 keV, previously detected in ASCA data, is confirmed. Time-resolved spectroscopy with ~daily sampling reveals a distinction in the variability of the soft hump and power-law components over a timescale of weeks, with the hump varying by a factor of 6 across the 35-day observation compared to a factor 4 in the power-law. Flux variations in the power-law component are measured down to a timescale of ~1000s and accompanying spectral variability suggests the soft hump is not well-correlated with the power-law on such short timescales. We detect Fe Ka and a blend of Fe Kb plus Ni Ka, indicating an origin in highly ionized gas. Variability measurements constrain the bulk of the Fe Ka to originate within a light week of the nucleus. The large EW of the emission lines may be due to high metallicity in NLS1s, supporting some evolutionary models for AGN.Comment: 41 pages, 15 figures. Accepted for publication in the Astrophysical Journal (v3 has final fixes for publication

    Anatomy of the AGN in NGC 5548: I. A global model for the broadband spectral energy distribution

    Get PDF
    An extensive multi-satellite campaign on NGC 5548 has revealed this archetypal Seyfert-1 galaxy to be in an exceptional state of persistent heavy absorption. Our observations taken in 2013-2014 with XMM-Newton, Swift, NuSTAR, INTEGRAL, Chandra, HST and two ground-based observatories have together enabled us to establish that this unexpected phenomenon is caused by an outflowing stream of weakly ionised gas (called the obscurer), extending from the vicinity of the accretion disk to the broad-line region. In this work we present the details of our campaign and the data obtained by all the observatories. We determine the spectral energy distribution of NGC 5548 from near-infrared to hard X-rays by establishing the contribution of various emission and absorption processes taking place along our line of sight towards the central engine. We thus uncover the intrinsic emission and produce a broadband continuum model for both obscured (average summer 2013 data) and unobscured (<< 2011) epochs of NGC 5548. Our results suggest that the intrinsic NIR/optical/UV continuum is a single Comptonised component with its higher energy tail creating the 'soft X-ray excess'. This component is compatible with emission from a warm, optically-thick corona as part of the inner accretion disk. We then investigate the effects of the continuum on the ionisation balance and thermal stability of photoionised gas for unobscured and obscured epochs.Comment: Accepted for publication in A&A, 19 pages, 13 figure

    A fast and long-lived outflow from the supermassive black hole in NGC 5548

    Get PDF
    Supermassive black holes in the nuclei of active galaxies expel large amounts of matter through powerful winds of ionized gas. The archetypal active galaxy NGC 5548 has been studied for decades, and high-resolution X-ray and UV observations have previously shown a persistent ionized outflow. An observing campaign in 2013 with six space observatories shows the nucleus to be obscured by a long-lasting, clumpy stream of ionized gas never seen before. It blocks 90% of the soft X-ray emission and causes simultaneous deep, broad UV absorption troughs. The outflow velocities of this gas are up to five times faster than those in the persistent outflow, and at a distance of only a few light days from the nucleus, it may likely originate from the accretion disk.Comment: 25 pages, 8 figures. This is the author's version of the work. It is posted here by permission of the AAAS for personal use, not for redistribution. The definitive version was published in Science, electronically available at Science Express (June 19, 2014). For a brief video explaining the key results of this paper, please visit http://www.issibern.ch/teams/ngc5548/?page_id=2
    • 

    corecore