4,340 research outputs found

    The authors reply.

    Get PDF

    The authors reply.

    Get PDF

    Focus on paediatrics: 2017

    Get PDF
    “It is a capital mistake to theorize before one has data. Insensibly, one begins to twist facts to suit theories, instead of theories to suit facts” observed Sir Arthur Conan Doyle. The scarcity of data available for Paediatric Intensivists means that, unlike Sherlock Holmes, we often have to act without evidence [1]. Here, we review the recent contributions to PICU evidence from Intensive Care Medicine (ICM)

    Diabat method for polymorph free energies: Extension to molecular crystals

    Get PDF
    Lattice-switch Monte Carlo and the related diabat methods have emerged as efficient and accurate ways to compute free energy differences between polymorphs. In this work, we introduce a one-to-one mapping from the reference positions and displacements in one molecular crystal to the positions and displacements in another. Two features of the mapping facilitate lattice-switch Monte Carlo and related diabat methods for computing polymorph free energy differences. First, the mapping is unitary so that its Jacobian does not complicate the free energy calculations. Second, the mapping is easily implemented for molecular crystals of arbitrary complexity. We demonstrate the mapping by computing free energy differences between polymorphs of benzene and carbamazepine. Free energy calculations for thermodynamic cycles, each involving three independently computed polymorph free energy differences, all return to the starting free energy with a high degree of precision. The calculations thus provide a force field independent validation of the method and allow us to estimate the precision of the individual free energy differences

    The authors reply

    Get PDF

    Association of Arterial Hyperoxia With Outcomes in Critically Ill Children: A Systematic Review and Meta-analysis

    Get PDF
    Importance: Oxygen supplementation is a cornerstone treatment in pediatric critical care. Accumulating evidence suggests that overzealous use of oxygen, leading to hyperoxia, is associated with worse outcomes compared with patients with normoxia. Objectives: To evaluate the association of arterial hyperoxia with clinical outcome in critically ill children among studies using varied definitions of hyperoxia. Data Sources: A systematic search of EMBASE, MEDLINE, Cochrane Library, and ClinicalTrials.gov from inception to February 1, 2021, was conducted. Study Selection: Clinical trials or observational studies of children admitted to the pediatric intensive care unit that examined hyperoxia, by any definition, and described at least 1 outcome of interest. No language restrictions were applied. Data Extraction and Synthesis: The Meta-analysis of Observational Studies in Epidemiology guideline and Newcastle-Ottawa Scale for study quality assessment were used. The review process was performed independently by 2 reviewers. Data were pooled with a random-effects model. Main Outcomes and Measures: The primary outcome was 28-day mortality; this time was converted to mortality at the longest follow-up owing to insufficient studies reporting the initial primary outcome. Secondary outcomes included length of stay, ventilator-related outcomes, extracorporeal organ support, and functional performance. Results: In this systematic review, 16 studies (27 555 patients) were included. All, except 1 randomized clinical pilot trial, were observational cohort studies. Study populations included were post-cardiac arrest (n = 6), traumatic brain injury (n = 1), extracorporeal membrane oxygenation (n = 2), and general critical care (n = 7). Definitions and assessment of hyperoxia differed among included studies. Partial pressure of arterial oxygen was most frequently used to define hyperoxia and mainly by categorical cutoff. In total, 11 studies (23 204 patients) were pooled for meta-analysis. Hyperoxia, by any definition, showed an odds ratio of 1.59 (95% CI, 1.00-2.51; after Hartung-Knapp adjustment, 95% CI, 1.05-2.38) for mortality with substantial between-study heterogeneity (I2 = 92%). This association was also found in less heterogeneous subsets. A signal of harm was observed at higher thresholds of arterial oxygen levels when grouped by definition of hyperoxia. Secondary outcomes were inadequate for meta-analysis. Conclusions and Relevance: These results suggest that, despite methodologic limitations of the studies, hyperoxia is associated with mortality in critically ill children. This finding identifies the further need for prospective observational studies and importance to address the clinical implications of hyperoxia in critically ill children
    • …
    corecore