3,448 research outputs found

    A 10^6‑Fold Enhancement in N_2‑Binding Affinity of an Fe_2(μ-H)_2 Core upon Reduction to a Mixed-Valence Fe^(II)Fe^I State

    Get PDF
    Transient hydride ligands bridging two or more iron centers purportedly accumulate on the iron–molybdenum cofactor (FeMoco) of nitrogenase, and their role in the reduction of N_2 to NH_3 is unknown. One role of these ligands may be to facilitate N_2 coordination at an iron site of FeMoco. Herein, we consider this hypothesis and describe the preparation of a series of diiron complexes supported by two bridging hydride ligands. These compounds bind either one or two molecules of N_2 depending on the redox state of the Fe_2(μ-H)_2 unit. An unusual example of a mixed-valent Fe^(II)(μ-H)^2Fe^I is described that displays a 10^6-fold enhancement of N_2 binding affinity over its oxidized congener, quantified by spectroscopic and electrochemical techniques. Furthermore, these compounds show promise as functional models of nitrogenase as substantial amounts of NH_3 are produced upon exposure to proton and electron equivalents. The Fe(μ-H)Fe(N2_) sub-structure featured herein was previously unknown. This subunit may be relevant to consider in nitrogenases during turnover

    Studies of Cobalt-Mediated Electrocatalytic CO_2 Reduction Using a Redox-Active Ligand

    Get PDF
    The cobalt complex [Co^(III)N_4H(Br)_2]+ (N_4H = 2,12-dimethyl-3,7,11,17-tetraazabicyclo-[11.3.1]-heptadeca-1(7),2,11,13,15-pentaene) was used for electrocatalytic CO_2 reduction in wet MeCN with a glassy carbon working electrode. When water was employed as the proton source (10 M in MeCN), CO was produced (f_(CO)= 45% ± 6.4) near the Co^(I/0) redox couple for [Co^(III)N_4H(Br)_2]+ (E_(1/2) = −1.88 V FeCp_2^(+/0)) with simultaneous H_2 evolution (f_(H2)= 30% ± 7.8). Moreover, we successfully demonstrated that the catalytically active species is homogeneous through the use of control experiments and XPS studies of the working glassy-carbon electrodes. As determined by cyclic voltammetry, CO_2 catalysis occurred near the formal CoI/0redox couple, and attempts were made to isolate the triply reduced compound (“[Co^0N_4H]”). Instead, the doubly reduced (“Co^I”) compounds [CoN4] and [CoN_4H(MeCN)]+ were isolated and characterized by X-ray crystallography. Their molecular structures prompted DFT studies to illuminate details regarding their electronic structure. The results indicate that reducing equivalents are stored on the ligand, implicating redox noninnocence in the ligands for H_2 evolution and CO_2 reduction electrocatalysis

    Evaluating Activity for Hydrogen-Evolving Cobalt and Nickel Complexes at Elevated Pressures of Hydrogen and Carbon Monoxide

    Get PDF
    Molecular cobalt and nickel complexes are among the most promising homogeneous systems for electrocatalytic hydrogen evolution. However, there has been little exploration into the effect of gaseous co-additives such as CO and H_2, which may be present in operating hydrogen-evolving or carbon-dioxide reduction systems, on the performance of these molecular electrocatalysts. In this report, we investigate the electrocatalytic activity of six cobalt and nickel complexes supported by tetraazamacrocyclic or diazadiphosphacyclooctane ligands for the reduction of p-toluenesulfonic acid to hydrogen in acetonitrile under inert atmosphere and in the presence of CO and H_2. We present an elevated-pressure electrochemical apparatus capable of reaching CO and H_2 pressures of ca. 15–520 pounds per square inch (psia) (∼1–35 atm), and we use this apparatus to determine binding constants for CO addition for each catalyst and study the inhibition of the electrocatalysis as a function of CO and H_2 pressure. In the case of CO, the extent of catalytic inhibition is correlated to the binding constant, with the cobalt complexes showing a greater degree of catalyst inhibition compared to the nickel complexes. In the case of H2, no complex showed appreciable electrocatalytic inhibition even at H_2 pressures of ca. 500 psia

    Book Reviews

    Get PDF

    John Chalmers DaCosta (1863-1933): restoration of the old operating table.

    Get PDF
    John Chalmers DaCosta was an influential chairman and the first Samuel D. Gross Professor of Surgery at Jefferson Medical College in Philadelphia. He was well known throughout the field as a skilled surgeon, passionate speaker, and exceptional writer. In addition to countless accomplishments during his career, DaCosta was deeply dedicated to the preservation and commemoration of surgical history. This ideology was exemplified when he set out on a mission to recover the old wooden operating table used by many of his iconic mentors including Samuel D. Gross, Joseph Pancoast, and William W. Keen. This table was originally used for surgical demonstrations and anatomy lessons in a lecture room of the Ely Building and later in the great amphitheater of the Jefferson Sansom Street Hospital. It was found forgotten in the basement of the College Building and was promptly refurbished, donned with dedicatory plaques, and returned to its honored position in the medical college. Dr. DaCosta also contributed a detailed article recalling the history of the table and the notable leaders in surgery who taught and practiced on its surface. The old table currently stands proudly in the entranceway of the Department of Surgery where it will remain as a cherished symbol of the early beginnings of surgical practice and education

    Plasma exchange in focal necrotizing glomerulonephritis without anti-GBM antibodies

    Get PDF
    Plasma exchange in focal necrotizing glomerulonephritis without anti-GBM antibodies. To determine whether plasma exchange was of additional benefit in patients treated with oral immunosuppressive drugs for focal necrotizing glomerulonephritis (without anti-GBM antibodies), we performed a randomized controlled trial with stratification for renal function on entry Forty-eight cases were analyzed, 25 in the treatment group (plasma exchange, prednisolone, cyclophosphamide and azathioprine) and 23 in the control group (drug therapy only). There was no difference in outcome in patients presenting with serum creatinine < 500 µmol/liter (N = 17), or > 500 µmol/liter but not on dialysis (N = 12), all but one of whom had improved by four weeks. However, patients who were initially dialysis-dependent (N = 19) were more likely to have recovered renal function (P = 0.041) if treated with plasma exchange as well as drugs (10 of 11) rather than with drugs alone (3 of 8). Long-term follow-up showed that improvement in renal function was generally maintained. The results of this trial confirm that focal necrotizing glomerulonephritis related to systemic vasculitis responds well to immunosuppressive drugs when treatment is started early, and suggest that plasma exchange is of additional benefit in dialysis-dependent cases

    Cellular Responses in Sea Fan Corals: Granular Amoebocytes React to Pathogen and Climate Stressors

    Get PDF
    BACKGROUND: Climate warming is causing environmental change making both marine and terrestrial organisms, and even humans, more susceptible to emerging diseases. Coral reefs are among the most impacted ecosystems by climate stress, and immunity of corals, the most ancient of metazoans, is poorly known. Although coral mortality due to infectious diseases and temperature-related stress is on the rise, the immune effector mechanisms that contribute to the resistance of corals to such events remain elusive. In the Caribbean sea fan corals (Anthozoa, Alcyonacea: Gorgoniidae), the cell-based immune defenses are granular acidophilic amoebocytes, which are known to be involved in wound repair and histocompatibility. METHODOLOGY/PRINCIPAL FINDINGS: We demonstrate for the first time in corals that these cells are involved in the organismal response to pathogenic and temperature stress. In sea fans with both naturally occurring infections and experimental inoculations with the fungal pathogen Aspergillus sydowii, an inflammatory response, characterized by a massive increase of amoebocytes, was evident near infections. Melanosomes were detected in amoebocytes adjacent to protective melanin bands in infected sea fans; neither was present in uninfected fans. In naturally infected sea fans a concurrent increase in prophenoloxidase activity was detected in infected tissues with dense amoebocytes. Sea fans sampled in the field during the 2005 Caribbean Bleaching Event (a once-in-hundred-year climate event) responded to heat stress with a systemic increase in amoebocytes and amoebocyte densities were also increased by elevated temperature stress in lab experiments. CONCLUSIONS/SIGNIFICANCE: The observed amoebocyte responses indicate that sea fan corals use cellular defenses to combat fungal infection and temperature stress. The ability to mount an inflammatory response may be a contributing factor that allowed the survival of even infected sea fan corals during a stressful climate event

    Gastight Hydrodynamic Electrochemistry: Design for a Hermetically Sealed Rotating Disk Electrode Cell

    Get PDF
    Rotating disk electrodes (RDEs) are widely used in electrochemical characterization to analyze the mechanisms of various electrocatalytic reactions. RDE experiments often make use of or require collection and quantification of gaseous products. The combination of rotating parts and gaseous analytes makes the design of RDE cells that allow for headspace analysis challenging due to gas leaks at the interface of the cell body and the rotator. In this manuscript we describe a new, hermetically-sealed electrochemical cell that allows for electrode rotation while simultaneously providing a gastight environment. Electrode rotation in this new cell design is controlled by magnetically coupling the working electrode to a rotating magnetic driver. Calibration of the RDE using a tachometer shows that the rotation speed of the electrode is the same as that of the magnetic driver. To validate the performance of this cell for hydrodynamic measurements, limiting currents from the reduction of a potassium ferrocyanide (K_4[Fe(CN)_6] •3H_2O) were measured and shown to compare favorably with calculated values from the Levich equation and with data obtained using more typical, non-gastight RDE cells. Faradaic efficiencies of ~95% were measured in the gas phase for oxygen evolution in alkaline media at an Inconel 625 alloy electrocatalyst during rotation at 1600 rpm. These data verify that a gastight environment is maintained even during rotation
    corecore