1,588 research outputs found
Recommended from our members
Determination of Fissile Loadings Onto Monosodium Titanate (MST) Under Conditions Relevant to the Actinide Removal Process Facility
This report describes the results of an experimental study to measure the sorption of fissile acinides on monosodium titanate (MST) at conditions relevant to operation of Actinide Removal Process (ARP). The study examined the effect of a single contact of a large volume of radionuclide-spiked simulant solution with a small mass of MST
Recommended from our members
PROCESSING ALTERNATIVES FOR DESTRUCTION OF TETRAPHENYLBORATE
Two processes were chosen in the 1980's at the Savannah River Site (SRS) to decontaminate the soluble High Level Waste (HLW). The In Tank Precipitation (ITP) process (1,2) was developed at SRS for the removal of radioactive cesium and actinides from the soluble HLW. Sodium tetraphenylborate was added to the waste to precipitate cesium and monosodium titanate (MST) was added to adsorb actinides, primarily uranium and plutonium. Two products of this process were a low activity waste stream and a concentrated organic stream containing cesium tetraphenylborate and actinides adsorbed on monosodium titanate (MST). A copper catalyzed acid hydrolysis process was built to process (3, 4) the Tank 48H cesium tetraphenylborate waste in the SRS's Defense Waste Processing Facility (DWPF). Operation of the DWPF would have resulted in the production of benzene for incineration in SRS's Consolidated Incineration Facility. This process was abandoned together with the ITP process in 1998 due to high benzene in ITP caused by decomposition of excess sodium tetraphenylborate. Processing in ITP resulted in the production of approximately 1.0 million liters of HLW. SRS has chosen a solvent extraction process combined with adsorption of the actinides to decontaminate the soluble HLW stream (5). However, the waste in Tank 48H is incompatible with existing waste processing facilities. As a result, a processing facility is needed to disposition the HLW in Tank 48H. This paper will describe the process for searching for processing options by SRS task teams for the disposition of the waste in Tank 48H. In addition, attempts to develop a caustic hydrolysis process for in tank destruction of tetraphenylborate will be presented. Lastly, the development of both a caustic and acidic copper catalyzed peroxide oxidation process will be discussed
Recommended from our members
SODIUM ALUMINOSILICATE SOLIDS AFFINITY FOR CESIUM AND ACTINIDES
Washed sodium-aluminosilicate (NAS) solids at initial concentrations of 3.55 and 5.4 g/L sorb or uptake virtually no cesium over 288 hours, nor do any NAS solids generated during that time. These concentrations of solids are believed to conservatively bound current and near-term operations. Hence, the NAS solids should not have affected measurements of the cesium during the mass transfer tests and there is minimal risk of accumulating cesium during routine operations (and hence posing a gamma radiation exposure risk in maintenance). With respect to actinide uptake, it appears that NAS solids sorb minimal quantities of uranium - up to 58 mg U per kg NAS solid. The behavior with plutonium is less well understood. Additional study may be needed for radioactive operations relative to plutonium or other fissile component sorption or trapping by the solids. We recommend this testing be incorporated in the planned tests using samples from Tank 25F and Tank 49H to extend the duration to bound expected inventory time for solution
Analysis workflow to assess de novo genetic variants from human whole-exome sequencing
Here, we present a protocol to analyz
Recommended from our members
SODIUM ALUMINOSILICATE FOULING AND CLEANING OF DECONTAMINATED SALT SOLUTION COALESCERS
During initial non-radioactive operations at the Modular Caustic Side Solvent Extraction Unit (MCU), the pressure drop across the decontaminated salt solution coalescer reached {approx}10 psi while processing {approx}1250 gallons of salt solution, indicating possible fouling or plugging of the coalescer. An analysis of the feed solution and the 'plugged coalescer' concluded that the plugging was due to sodium aluminosilicate solids. MCU personnel requested Savannah River National Laboratory (SRNL) to investigate the formation of the sodium aluminosilicate solids (NAS) and the impact of the solids on the decontaminated salt solution coalescer. Researchers performed developmental testing of the cleaning protocols with a bench-scale coalescer container 1-inch long segments of a new coalescer element fouled using simulant solution. In addition, the authors obtained a 'plugged' Decontaminated Salt Solution coalescer from non-radioactive testing in the MCU and cleaned it according to the proposed cleaning procedure. Conclusions from this testing include the following: (1) Testing with the bench-scale coalescer showed an increase in pressure drop from solid particles, but the increase was not as large as observed at MCU. (2) Cleaning the bench-scale coalescer with nitric acid reduced the pressure drop and removed a large amount of solid particles (11 g of bayerite if all aluminum is present in that form or 23 g of sodium aluminosilicate if all silicon is present in that form). (3) Based on analysis of the cleaning solutions from bench-scale test, the 'dirt capacity' of a 40 inch coalescer for the NAS solids tested is calculated as 450-950 grams. (4) Cleaning the full-scale coalescer with nitric acid reduced the pressure drop and removed a large amount of solid particles (60 g of aluminum and 5 g of silicon). (5) Piping holdup in the full-scale coalescer system caused the pH to differ from the target value. Comparable hold-up in the facility could lead to less effective cleaning and precipitation of bayerite solid particles. (6) Based on analysis of the cleaning solutions from the full-scale test, the 'dirt capacity' of a 40 inch coalescer for these NAS solids was calculated to be 40-170 grams
Recommended from our members
ANALYSIS OF SOLVENT RECOVERED FROM WRIGHT INDUSTRIES, INCORPORATED TESTING
Washington Savannah River Company (WSRC) began designing and building a Modular Caustic Side Solvent Extraction (CSSX) Unit (MCU) at the Savannah River Site (SRS) to process liquid waste for an interim period. The MCU Project Team conducted testing of the contactors, coalescers, and decanters at Wright Industries, Incorporated (WII) in Nashville, Tennessee. That testing used MCU solvent and simulated SRS dissolved salt. Because of the value of the solvent, the MCU Project wishes to recover it for use in the MCU process in the H-Tank Farm. Following testing, WII recovered approximately 62 gallons of solvent (with entrained aqueous) and shipped it to SRS. The solvent arrived in two stainless steel drums. The MCU Project requested SRNL to analyze the solvent to determine whether it is suitable for use in the MCU Process. SRNL analyzed the solvent for Isopar{reg_sign} L by Gas Chromatography--Mass Spectroscopy (GC-MS), for Modifier and BOBCalixC6 by High Pressure Liquid Chromatography (HPLC), and for Isopar{reg_sign} L-to-Modifier ratio by Fourier-Transform Infrared (FTIR) spectroscopy. They also measured the solvent density gravimetrically and used that measurement to calculate the Isopar{reg_sign} L and Modifier concentration. The conclusions from this work are: (1) The constituents of the used WII solvent are collectively low in Isopar{reg_sign} L, most likely due to evaporation. This can be easily corrected through the addition of Isopar{reg_sign} L. (2) Compared to a sample of the WII Partial Solvent (without BOBCalixC6) archived before transfer to WII, the Reworked WII Solvent showed a significant improvement (i.e., nearly doubling) in the dispersion numbers for tests with simulated salt solution and with strip acid. Hence, the presence of the plasticizer impurity has no detrimental impact on phase separation. While there are no previous dispersion tests using the exact same materials, the results seem to indicate that the washing of the solvent gives a dispersion benefit. (3) WII Solvent that underwent a cleaning cycle provides an acceptable set of cesium distribution (i.e., D) values when used in a standard Extraction, Scrub, and Strip (ESS) test
Recommended from our members
TAILORING INORGANIC SORBENTS FOR SRS STRONTIUM AND ACTINIDE SEPARATIONS: OPTIMIZED MONOSODIUM TITANATE PHASE II FINAL REPORT
This document provides a final report of Phase II testing activities for the development of a modified monosodium titanate (MST) that exhibits improved strontium and actinide removal characteristics compared to the baseline MST material. The activities included determining the key synthesis conditions for preparation of the modified MST, preparation of the modified MST at a larger scale by a commercial vendor, demonstration of the strontium and actinide removal characteristics with actual tank waste supernate and measurement of filtration characteristics. Key findings and conclusions include the following. Testing evaluated three synthetic methods and eleven process parameters for the optimum synthesis conditions for the preparation on an improved form of MST. We selected the post synthesis method (Method 3) for continued development based on overall sorbate removal performance. We successfully prepared three batches of the modified MST using Method 3 procedure at a 25-gram scale. The laboratory prepared modified MST exhibited increased sorption kinetics with simulated and actual waste solutions and similar filtration characteristics to the baseline MST. Characterization of the modified MST indicated that the post synthesis treatment did not significantly alter the particle size distribution, but did significantly increase the surface area and porosity compared to the original MST. Testing indicated that the modified MST exhibits reduced affinity for uranium compared to the baseline MST, reducing risk of fissile loading. Shelf-life testing indicated no change in strontium and actinide performance removal after storing the modified MST for 12-months at ambient laboratory temperature. The material releases oxygen during the synthesis and continues to offgas after the synthesis at a rapidly diminishing rate until below a measurable rate after 4 months. Optima Chemical Group LLC prepared a 15-kilogram batch of the modified MST using the post synthesis procedure (Method 3). Performance testing with simulated and actual waste solutions indicated that the material performs as well as or better than batches of modified MST prepared at the laboratory-scale. Particle size data of the vendor-prepared modified MST indicates a broader distribution centered at a larger particle size and microscopy shows more irregular particle morphology compared to the baseline MST and laboratory prepared modified MST. Stirred-cell (i.e., dead-end) filter testing revealed similar filtration rates relative to the baseline MST for both the laboratory and vendor-prepared modified MST materials. Crossflow filtration testing indicated that with MST-only slurries, the baseline MST produced between 30-100% higher flux than the vendor-prepared modified MST at lower solids loadings and comparable flux at higher solids loadings. With sludge-MST slurries, the modified MST produced 1.5-2.2 times higher flux than the baseline MST at all solids loadings. Based on these findings we conclude that the modified MST represents a much improved sorbent for the separation of strontium and actinides from alkaline waste solutions and recommend continued development of the material as a replacement for the baseline MST for waste treatment facilities at the Savannah River Site
Phylogenetic relationships of cone snails endemic to Cabo Verde based on mitochondrial genomes
Background: Due to their great species and ecological diversity as well as their capacity to produce hundreds of different toxins, cone snails are of interest to evolutionary biologists, pharmacologists and amateur naturalists alike. Taxonomic identification of cone snails still relies mostly on the shape, color, and banding patterns of the shell. However, these phenotypic traits are prone to homoplasy. Therefore, the consistent use of genetic data for species delimitation and phylogenetic inference in this apparently hyperdiverse group is largely wanting. Here, we reconstruct the phylogeny of the cones endemic to Cabo Verde archipelago, a well-known radiation of the group, using mitochondrial (mt) genomes. Results: The reconstructed phylogeny grouped the analyzed species into two main clades, one including Kalloconus from West Africa sister to Trovaoconus from Cabo Verde and the other with a paraphyletic Lautoconus due to the sister group relationship of Africonus from Cabo Verde and Lautoconus ventricosus from Mediterranean Sea and neighboring Atlantic Ocean to the exclusion of Lautoconus endemic to Senegal (plus Lautoconus guanche from Mauritania, Morocco, and Canary Islands). Within Trovaoconus, up to three main lineages could be distinguished. The clade of Africonus included four main lineages (named I to IV), each further subdivided into two monophyletic groups. The reconstructed phylogeny allowed inferring the evolution of the radula in the studied lineages as well as biogeographic patterns. The number of cone species endemic to Cabo Verde was revised under the light of sequence divergence data and the inferred phylogenetic relationships. Conclusions: The sequence divergence between continental members of the genus Kalloconus and island endemics ascribed to the genus Trovaoconus is low, prompting for synonymization of the latter. The genus Lautoconus is paraphyletic. Lautoconus ventricosus is the closest living sister group of genus Africonus. Diversification of Africonus was in allopatry due to the direct development nature of their larvae and mainly triggered by eustatic sea level changes during the Miocene-Pliocene. Our study confirms the diversity of cone endemic to Cabo Verde but significantly reduces the number of valid species. Applying a sequence divergence threshold, the number of valid species within the sampled Africonus is reduced to half.Spanish Ministry of Science and Innovation [CGL2013-45211-C2-2-P, CGL2016-75255-C2-1-P, BES-2011-051469, BES-2014-069575, Doctorado Nacional-567]info:eu-repo/semantics/publishedVersio
Campylobacter jejuni genotypes are associated with post-infection irritable bowel syndrome in humans
Campylobacter enterocolitis may lead to post-infection irritable bowel syndrome (PI-IBS) and while some C. jejuni strains are more likely than others to cause human disease, genomic and virulence characteristics promoting PI-IBS development remain uncharacterized. We combined pangenome-wide association studies and phenotypic assays to compare C. jejuni isolates from patients who developed PI-IBS with those who did not. We show that variation in bacterial stress response (Cj0145_phoX), adhesion protein (Cj0628_CapA), and core biosynthetic pathway genes (biotin: Cj0308_bioD; purine: Cj0514_purQ; isoprenoid: Cj0894c_ispH) were associated with PI-IBS development. In vitro assays demonstrated greater adhesion, invasion, IL-8 and TNFα secretion on colonocytes with PI-IBS compared to PI-no-IBS strains. A risk-score for PI-IBS development was generated using 22 genomic markers, four of which were from Cj1631c, a putative heme oxidase gene linked to virulence. Our finding that specific Campylobacter genotypes confer greater in vitro virulence and increased risk of PI-IBS has potential to improve understanding of the complex host-pathogen interactions underlying this condition
- …