25 research outputs found

    Target of initial sub-movement in multi-component arm-reaching strategy

    No full text
    Goal-directed human reaching often involves multi-component strategy with sub-movements. In general, the initial sub-movement is fast and less precise to bring the limb’s endpoint in the vicinity of the target as soon as possible. The final sub-movement then corrects the error accumulated during the previous sub-movement in order to reach the target. We investigate properties of a temporary target of the initial sub-movement. We hypothesise that the peak spatial dispersion of movement trajectories in the axis perpendicular to the movement is in front of the final reaching target, and that it indicates the temporary target of the initial sub-movement. The reasoning is that the dispersion accumulates, due to signal-dependent noise during the initial sub-movement, until the final corrective sub-movement is initiated, which then reduces the dispersion to successfully reach the actual target. We also hypothesise that the reaching movement distance and size of the actual target affect the properties of the temporary target of the initial sub-movement. The increased reaching movement distance increases the magnitude of peak dispersion and moves its location away from the actual target. On the other hand, the increased target size increases the magnitude of peak dispersion and moves its location closer to the actual target.Human-Robot Interactio

    After a Decade of Teleimpedance: A Survey

    No full text
    Despite the significant progress made in making robots more intelligent and autonomous, today, teleoperation remains a dominant robot control paradigm for the execution of complex and highly unpredictable tasks. Attempts have been made to make teleoperation systems stable, easy to use, and efficient in terms of physical interactions between the follower remote robot and the environment. In particular, the emergence of torque-controlled robots has permitted to regulate the interaction forces from a distance through direct force or impedance control, enabling them to engage in complex interaction tasks. Exploiting this feature, the concept of teleimpedance control was introduced as an alternative method to bilateral force-reflecting teleoperation. The aim was to create a feed-froward yet contact-efficient teleoperation by enriching the leader commands with desired impedance profiles while executing a task. Since then, the teleimpedance concept has found its way into a wide range of interface and controller designs, as well as application domains. Accordingly, after a decade of research progress, this survey aims to provide: first, a convenient introduction of the concept to new researchers in the field, second, consolidate the existing state-of-the-art for active researchers, third, and discuss the pros and cons of different methods in terms of interface and force feedback to provide guidelines for different applications and future developments. Green Open Access added to TU Delft Institutional Repository 'You share, we take care!' - Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.Human-Robot Interactio

    A Multi-Modal Feedback Communication Interface for Human Working Posture Adjustments

    No full text
    This paper studies non-physical feedback mechanisms to guide human workers toward ergonomic body postures. Specifically, the focus is to solve the tasks that involve no direct physical interaction between the human and the robotic system, therefore tactile guidance by the robot body is not feasible. We propose a multi-modal ergonomic posture guidance system that comprises visual feedback and speech-based audio feedback. We hypothesise that the proposed multi-modal system leads to better performance compared to uni-modal feedback systems when trying to guide users from one pose to another. To test the hypothesis we conducted an experiment that compared conditions with only audio feedback, only visual feedback and multi-modal feedback. In addition, we examined speech-based audio guidance in joint space and in endpoint space. The results showed that the speech-based feedback in joint space came out as the preferred audio feedback due to its ability to allow users to carry out efficient and coordinated inter-joint movements, especially in cases of high redundancy. Furthermore, the proposed multi-modal feedback system was superior compared to the other feedback modalities both in terms of objective measures and subjective measures.Green Open Access added to TU Delft Institutional Repository 'You share, we take care!' - Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.Human-Robot Interactio

    The effects of role transitions and adaptation in human–cobot collaboration

    No full text
    Collaborative robots (cobots) have the potential to augment the productivity and life quality of human operators in the context of Industry 4.0 by providing them with physical assistance. For this reason, it is necessary to define the relationship between humans and cobots and to study how the two agents adapt to each other. However, to the best of our knowledge, literature is still missing insight into how humans perceive and react to changes in the cobot behavior (e.g. changes in the learned trajectory and in the role the robot assumes). Specifically, a study of how humans adapt to changing roles and control strategies of collaborating robots is missing. To fill this gap, we propose a human study in which 16 participants executed a collaborative human–robot sawing task where the cobot altered between three different control strategies. We examined human adaptation when cobot suddenly changed the control strategy from one to another, resulting in six experimental conditions. The experiments were performed on a setup involving Kuka LBR iiwa robotic arm. The results suggest that transition influences movement performance in the early stages and at steady state, subjects prefer to abandon modes that require more effort and they adapt faster to energy-demanding modes. Finally, for the specific task we studied, subjects tend to prefer collaborative modes to ones in which the robot assumes a fixed role.Green Open Access added to TU Delft Institutional Repository 'You share, we take care!' - Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.Human-Robot Interactio

    Independently Commanding Size, Shape and Orientation of Robot Endpoint Stiffness in Tele-Impedance by Virtual Ellipsoid Interface

    No full text
    The existing state-of-the-art interfaces for commanding a remote robot's endpoint stiffness ellipsoid in tele-impedance lack the ability to independently control its size, shape and orientation or they are not easily to implement due to the use of physiological signals, such as electromyography, to control the endpoint stiffness. We propose a novel method that can command size, shape and orientation independently and simultaneously through a virtual stiffness ellipsoid generated on a touchscreen device. The human operator controls size, shape and orientation of the virtual ellipsoid using his/her index and thumb fingers of one hand. This virtual ellipsoid is then mapped to the Cartesian stiffness ellipsoid of a remote robot endpoint in real-time. The other hand holds the haptic device to control the pose of the remote robotic arm. Compared to the state-of-the-art methods to control the robot stiffness in tele-impedance, the main advantages of the proposed method are its relatively simple implementation and ability of independent control over various aspects of the robot endpoint stiffness ellipsoid. To provide a proof-of-concept and demonstrate the main features of the proposed approach, we performed several experiments on a tele-impedance setup with a Kuka LBR iiwa robotic arm and a Force Dimension Sigma7 haptic device. We examined two principal types of tasks, in which changing stiffness parameters of the remote robot is important for successful task execution: counteracting external perturbations and establishing contact with unknown objects. The results indicate that our proposed approach can successfully deal with these tasks. A human subject study showed that the touchscreen interface is faster in commanding the desired stiffness compared to another state-of-the-art input method, while showing similar workload ratings.Accepted Author ManuscriptHuman-Robot Interactio

    A Semi-Autonomous Tele-Impedance Method based on Vision and Voice Interfaces

    No full text
    In tele-impedance the human can control the impedance of the remote robot through various interfaces, in addition to controlling the motion. While this can improve the performance of the remote robot in unpredictable and unstructured environments, it can add more workload to the human operator compared to the classic teleoperation. This paper presents a novel method for a semi-autonomous tele-impedance, where the controller exploits the robot vision to detect the environment and selects the appropriate impedance. For example, if vision detects a fragile object like glass, the controller autonomously lowers the impedance to increase the safety, while the human is commanding the motion to initiate and perform the interaction. If the vision algorithm is not confident in its detection, we developed an additional verbal communication interface that enables the human to confirm or correct the autonomous decision. Therefore, the method has four modalities: (i) perturbation rejection mode, (ii) object property detection mode, (iii) verbal confirmation mode, (iv) voice control mode. We conducted proof-of-concept experiments on a teleoperation setup, where the human operator performed position tracking and contact establishing tasks.Accepted Author ManuscriptHuman-Robot Interactio

    The Force-Feedback Coupling Effect in Bilateral Tele-Impedance

    No full text
    In this paper, we introduce and explore a concept called coupling effect, which pertains to the influence of force feedback on the commanded stiffness that is voluntarily controlled by the operator through the stiffness interface during bilateral tele-impedance. The degree of coupling effect depends on the type of interface used to control the impedance of the remote robot. In case of muscle activity based stiffness command interfaces, the force feedback can invoke involuntary changes in the commanded stiffness due to human reflexes. These involuntary changes can be either beneficial (e.g., during position tracking) or detrimental (e.g., during force tracking) to the task performance on the remote robot side. To investigate the coupling effect in different types of stiffness command interfaces (i.e., coupled and decoupled), we conduct an experimental study in which participants are asked to perform position and force tracking tasks. The results show that in both position and force tracking tasks a lower tracking error of the reference stiffness is obtained with a decoupled interface (p<0.001). However, the unexpected force perturbation yields lower absolute position error when using a coupled interface (p=0.0091), which indicates a specific benefit of the coupling effect. Finally, a lower absolute force error is found in the force tracking task by using the decoupled interface (p<0.001), which indicates a specific downside of the coupling effect. Accepted Author ManuscriptHuman-Robot Interactio

    Analysis of Coupling Effect in Human-Commanded Stiffness During Bilateral Tele-Impedance

    No full text
    Tele-impedance augments classic teleoperation by enabling the human operator to actively command remote robot stiffness in real-time, which is an essential ability to successfully interact with the unstructured and unpredictable environment. However, the literature is missing a study on benefits and drawbacks of different types of stiffness command interfaces used in bilateral tele-impedance. In this article, we introduce a term called coupling effect, which pertains to the coupling between human-commanded stiffness going to the remote robot and force feedback coming from the remote robot. We hypothesize that, whenever the operator's commanded stiffness and force feedback are subject to coupling effect (e.g., muscle activity based stiffness command interfaces), force feedback can invoke involuntary changes in the commanded stiffness due to human reflexes. Although the coupling effect takes away some degree of the operator's control over the commanded stiffness, these involuntary changes can be either beneficial (e.g., during position tracking) or detrimental (e.g., during force tracking) to the task performance on the remote robot side. We examined the coupling effect in an experimental study with <formula><tex>16\mathbf {16}</tex></formula> participants, who performed position and force tracking tasks by using both coupled type (muscle activity based) and decoupled type (external device based) of interface. The results demonstrate a benefit of the coupling effect when the remote robot is operating in presence of unexpected force perturbations, where lower absolute error in position tracking task was observed. On the other hand, the decoupled type of interface is beneficial for force tracking tasks on the remote robot side, such as establishing or maintaining a stable contact with objects. However, the coupling effect negatively influences the commanding of reference stiffness to the remote robot in both position and force tracking tasks for the coupled type of interface, compared to the decoupled type of interface, which is not affected.Accepted Author ManuscriptHuman-Robot Interactio

    A Multi-metric Modular Framework for Human-like Gait Analysis Based on a Recorded Set of Variable Gait Patterns

    No full text
    Walking is an essential part of almost all activities of daily living. We use different gait patterns in different situations, e.g., moving around the house, performing various sports, or when compensating for an injury. However, how humans perform this gait tailoring remains a partially unknown process. To this end, the influence of various performance metrics on the optimality and diversity of gait patterns can provide us with more insight. To analyse gait in terms of pattern diversity and performance metrics related to physical aspects, such as joint torque, fatigue, and manipulability, we propose a multi-metric gait analysis framework that simultaneously accounts for these parameters. We used a recorded set of versatile gait patterns that are already dynamically stable and physiologically feasible. To that end, 45 gait variations-varying in stride length, step height, and walking speed-were recorded in a motion capture experiment. Results of analysis using the recorded dataset are presented for a baseline case (with all optimisation weights set to one), which serves as the first step for future research, in particular giving insights into specific aspects of the gait, e.g., joint loading, long-term performance, and capacity to sustain ground reaction forces.Green Open Access added to TU Delft Institutional Repository 'You share, we take care!' - Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.Human-Robot Interactio

    Binary and Hybrid Work-Condition Maps for Interactive Exploration of Ergonomic Human Arm Postures

    No full text
    Ergonomics of human workers is one of the key elements in design and evaluation of production processes. Human ergonomics have a major impact on productivity as well as chronic health risks incurred by inappropriate working postures and conditions. In this paper we propose a novel method for estimating and communicating the ergonomic work condition called Binary Work-Condition Map, which provides a visualized feedback about work conditions of different configurations of an arm. The map is of binary nature and is derived by imposing the desired thresholds on considered ergonomic and safety related criteria. Therefore, the suggested arm postures in the map guarantee that all considered criteria are satisfied. This eliminates the ambiguity compared to state-of-the-art maps that uses continuous scales derived from weighted sum of multiple ergonomics criteria. In addition, to combine the advantages of both the binary map and the continuous map, we additionally propose a Hybrid Work-Condition Map that rules out unsuitable workspace with the binary map approach and renders the suitable workspace with the continuous map approach. The proposed approach was tested in simulation for various tasks and conditions. In addition, we conducted subjective evaluation experiments to compare the proposed methods with the state-of-the art method regarding the usability. The results indicated that the binary map is simpler to use, while the hybrid map is a good tradeoff between the binary and the continuous map. In selecting the map, strong points of each map should be considered with respect to the requirements of a specific application and task.Human-Robot Interactio
    corecore