563 research outputs found
Early Archean tonalite gneiss in the upper peninsula of Michigan
Geochronological results on tonalite gneiss of northern Michigan that is 3.56 Ga or slightly older is presented. Tonalitic augen gneiss and structurally overlying biotite gneiss and schist are exposed in a dome near Watersmeet. They are part of an extensive gneiss terrane of southern Minnesota, Wisconsin and Michigan that includes rocks of early to late Archean ages and lies south of the Wawa volcanic subprovince. Two samples of the augen gneiss and one of the biotite gneiss show zircon grains of similar shape, zoning, color, and development of crystal faces. These zircons give Pb/U isotopic ratios that plot on a chord of 3,560 + or - 40 m.y. upper intersect and of 1,250 + or m.y. lower intersect. The 3,560 m.y. number is believed to be a minimum age because analysis of one of the least discordant zircon fractions by ion microprobe that gave a nearly concordant age of 3,650 m.y. The 1,250 m.y. lower intersect is without geological significance: it is interpreted to be a result of multiple lead loss at 2.7, 1.8, and 0.5 Ga by U/Pb in zircon. Archean rocks 10 to 25 km northwest of the Watersmeet dome give a 2.75 Ga age on zircons. Quartz monzonite here is dated at 2.65 Ga
Recommended from our members
Geochemistry of Natural Components in the Near-Field Environment, Yucca Mountain, Nevada
The natural near-field environment in and around the emplacement drifts of the proposed nuclear waste repository at Yucca Mountain, Nevada, includes the host rock, dust, seepage water, and pore water. The chemical compositions of these components have been analyzed to provide a basis for assessing possible chemical and mineralogical reactions that may occur in and around the emplacement drifts during the heating and cooling cycle. The crystal-poor rhyolite of the Topopah Spring Tuff of Miocene age with an average silica (SiO{sub 2}) content of 76 percent will host the proposed repository. Samples of the rhyolite are relatively uniform in chemical composition as shown by an average coefficient of variation (CV) of 8.6 percent for major elements. The major component of underground dust is comminuted tuff generated during construction of the tunnel. Average CVs for major elements of dust samples collected from the main tunnel (Exploratory Studies Facility, ESF) and a cross drift (Enhanced Characterization of the Repository Block, ECRB) are 25 and 28 percent, respectively. This increased variability is due to a variable amount of dust derived from trachyte with SiO{sub 2} contents as low as 66 percent (from overlying crystal-rich members) and from surface dust with an even lower average SiO{sub 2} content of 60 percent (from the abundance of trachyte in outcrop and carbonate dust derived from nearby ranges). The composition of the water-soluble fraction of dust is of interest with regard to possible salt deliquescence on waste canisters. The nitrate-to-chloride (NO{sub 3}{sup -}/Cl{sup -}) ratio (weight) is used to assess the potential corrosive nature of the salts because an excess of NO{sub 3}{sup -} over Cl{sup -} may inhibit the formation of the more corrosive calcium chloride brines in deliquescing salts. The soluble fractions of dust samples typically have NO{sub 3}{sup -}/Cl{sup -} ratios between 1 and 10. About 30 samples of seepage into the south ramp of the ECRB have an average NO{sub 3}{sup -}/Cl{sup -} of 0.62. Pore water extracted from core samples of the repository host rock has lower NO{sub 3}{sup -}/Cl{sup -}-ratios with an average value of 0.28 and a range over two orders of magnitude. Of all the components of the natural system, pore water has the largest compositional variability with an average CV of 62 percent, and thus, is the most difficult to characterize. Because pore water is extracted from dry-drilled core, its solute content may have been increased by evaporation during drilling, handling, storage, and extraction by ultracentrifugation. Further, microbial activity in the core during storage may reduce the concentration of NO{sub 3}{sup -} thus decreasing the NO{sub 3}{sup -}/Cl{sup -} ratio. Therefore, the more dilute pore water samples might be considered the most representative of native pore water with NO{sub 3}{sup -}/Cl{sup -} ratios close to unity or greater
Recommended from our members
Chemistry of Water Collected From an Unventillated Drift, Yucca Mountain, Nevada
The chemical composition of water that may be present in the emplacement drifts is a key issue for the isolation of high-level radioactive waste in a proposed mined geologic repository at Yucca Mountain, Nevada. Chemical constituents in water that may contact waste containers may affect rates of corrosion of the container materials. Long-term simulations of the in-drift chemical environment rely on ambient water chemistry, heat perturbations, and the interaction of ambient water with the engineered barriers (e.g. waste containers) and other introduced materials (e.g. rock bolts). In an attempt to induce seepage in the Enhanced Characterization of the Repository Block Cross Drift, bulkheads were constructed to isolate part of the 2.7-km-long drift from active ventilation. The bulkheads were closed and active ventilation ceased for periods up.to 454 days. After opening the bulkheads, water was observed in small puddles on plastic sheets and on rubber conveyor belt surfaces; droplets of water were observed on many surfaces of various construction-related introduced materials. Mold or fungal colonies also were present. The puddles of water were sampled seven times from January 2003 to June 2005; most samples appeared yellow to brown. The water samples were analyzed for major and trace constituents by using ion chromatography and inductively-coupled plasma mass spectrometry. Total dissolved solids (TDS) in the puddle-water samples ranged from 195 to 22,000 milligrams per liter (mg/L) and pH ranged from 4.2 to 8.9; these values are different from ambient pore-water samples extracted from adjacent rock (TDS < 1,400 mg/L and pH from 6.7 to 8.2). The chemical composition of the puddle-water samples is dominated by sodium and chloride, also different from the pore-water samples, which are dominated by sodium, calcium, and bicarbonate. Zinc concentrations ranged from 0.5 to 3,100 mg/L, substantially greater than the less than 0.1 mg/L values measured in pore water. Some of the chemical constituents measured in the puddle-water samples can be traced to interaction with the construction-related introduced materials. The isotopic composition of strontium in the puddle-water samples also indicates a source from introduced materials. Understanding the origin of the unusual chemistry of the puddle waters will facilitate the selection of materials for use in emplacement drifts, and will enhance predictability of the in-drift chemical environment during the post-closure time period
Recommended from our members
U-Pb Ages of Secondary Silica at Yucca Mountain, Nevada: Implications for the Paleohydrology of the Unsaturated Zone
U, Th, and Pb isotopes were analyzed in layers of opal and chalcedony from individual millimeter- to centimeter-thick calcite and silica coatings at Yucca Mountain, Nevada, USA, a site that is being evaluated for a potential high-level nuclear waste repository. These calcite and silica coatings on fractures and in lithophysal cavities in Miocene-age tuffs in the unsaturated zone (UZ) precipitated from descending water and record a long history of percolation through the UZ. Opal and chalcedony have high concentrations of U (10 to 780 ppm) and low concentrations of common Pb as indicated by large values of {sup 206}Pb/{sup 204}Pb (up to 53,806), thus making them suitable for U-Pb age determinations. Interpretations of U-Pb isotopes in opal samples at Yucca Mountain are complicated by the incorporation of excess {sup 234}U at the time of mineral formation, resulting in reverse discordance of U-Pb ages. However, the {sup 207}Pb/{sup 235}U ages are much less affected by deviation from initial secular equilibrium and provide reliable ages of most silica deposits between 0.6 and 9.8 Ma. For chalcedony subsamples showing normal age discordance, these ages may represent minimum times of deposition. Typically, {sup 207}Pb/{sup 235}U ages are consistent with the microstratigraphy in the mineral coating samples, such that the youngest ages are for subsamples from outer layers, intermediate ages are from inner layers, and oldest ages are from innermost layers. {sup 234}U and {sup 230}Th in most silica layers deeper in the coatings are in secular equilibrium with {sup 238}U, which is consistent with their old age and closed system behavior during the past 0.5 m.y. U-Pb ages for subsamples of silica layers from different microstratigraphic positions in individual calcite and silica coating samples collected from lithophysal cavities in the welded part of the Topopah Spring Tuff yield slow long-term average depositional rates of 1 to 5 mm/m.y. These data imply that the deeper parts of the UZ at Yucca Mountain maintained long-term hydrologic stability over the past 10 m.y. despite significant climate variations. U-Pb ages for subsamples of silica layers from different microstratigraphic positions in individual calcite and silica coating samples collected from fractures in the welded part of the overlying Tiva Canyon Tuff indicate larger long-term average depositional rates up to 23 mm/m.y. and an absence of recently deposited materials (ages of outermost layers are 3-5 Ma). These differences between the characteristics of the coatings for samples from the shallower and deeper parts of the UZ may indicate that the nonwelded tuffs (PTn), located between the welded parts of the Tiva Canyon and Topopah Spring Tuffs, play an important role in moderating UZ flow
Recommended from our members
Isotopic tracers of gold deposition in Paleozoic limestones, Southern Nevada
Strontium isotopic analyses of barren and mineralized Paleozoic carbonate rocks show that hydrothermal fluids added radiogenic strontium ({sup 87}Sr) to the mineralized zones. At Bare Mountain, samples collected from mineralized areas have {delta}{sup 87}Sr{sub t} values ranging from +3.0 to +23.0, whereas unmineralized carbonate rocks have {delta}{sup 87}Sr, values of {minus}0.6 to +2.9. In other ranges, {delta}{sup 87}Sr, values of the unmineralized carbonate rocks are even lower and virtually indistinguishable from primary marine values. This correlation of elevated {delta}{sup 87}Sr{sub t} values with mineralized zones provides a useful technique for assessing the mineral potential of the Paleozoic basement beneath Yucca Mountain, and may find broader use in mineral exploration in the Basin and Range province as a whole
Relating Physical Observables in QCD without Scale-Scheme Ambiguity
We discuss the St\"uckelberg-Peterman extended renormalization group
equations in perturbative QCD, which express the invariance of physical
observables under renormalization-scale and scheme-parameter transformations.
We introduce a universal coupling function that covers all possible choices of
scale and scheme. Any perturbative series in QCD is shown to be equivalent to a
particular point in this function. This function can be computed from a set of
first-order differential equations involving the extended beta functions. We
propose the use of these evolution equations instead of perturbative series for
numerical evaluation of physical observables. This formalism is free of
scale-scheme ambiguity and allows a reliable error analysis of higher-order
corrections. It also provides a precise definition for as the pole in the associated 't Hooft scheme. A concrete application to
is presented.Comment: Plain TEX, 4 figures (available upon request), 22 pages,
DOE/ER/40322-17
Search for Baryon and Lepton Number Violating Decays of the Lepton
We have searched for five decay modes of the tau lepton that simultaneously
violate lepton and baryon number: tau -> anti-proton gamma, tau -> anti-proton
pi0, tau -> anti-proton eta, tau -> anti-proton 2pi0, and tau -> anti-proton
pi0eta. The data used in the search were collected with the CLEO II detector at
the Cornell Electron Storage Ring (CESR). The integrated luminosity of the data
sample is 4.7 fb^{-1}, corresponding to the production of 4.3 x 10^6 tau+tau-
events. No evidence is found for any of the decays, resulting in much improved
upper limits on the branching fractions for the two-body decays and first upper
limits for the three-body decays.Comment: 8 pages, postscript file also available through
http://w4.lns.cornell.edu/public/CLN
Geochemistry of Vein Calcites Hosted in the Troodos Pillow Lavas and Their Implications for the Timing and Physicochemical Environment of Fracturing, Fluid Circulation, and Vein Mineral Growth
Calcite veins hosted in pillow lavas of the Late Cretaceous Troodos suprasubduction zone ophiolite provide insights into the timing and physicochemical environment of postmagmatic fracturing and fluid circulation through oceanic crust. This study presents rare earth element and yttrium (REE+Y) concentrations, δ13C, δ18O, 87Sr/86Sr, and clumped isotopic (Î47) compositions of vein calcites in order to investigate their fluid sources, formation temperatures, and precipitation ages. These geochemical data are combined with microtextural analyses. Intersections of 87Sr/86Sr ratios of vein calcites with the Sr isotope seawater curve suggest two distinct calcite veining phases. Major calcite veining within an interval of ~10 Myr after crust formation is characterized by microtextures that point to extensional fracturing related to crack and sealing, host rock brecciation, and advective fluid flow. These vein calcites show REE+Y characteristics, 87Sr/86Sr ratios, and clumped isotopic compositions indicative of precipitation from seawater at <50 °C. Extended fluid residence times intensified fluidârock interactions and lowered Y/Ho ratios of some blocky vein calcites, whereas crack and sealing resulted in pristine seawater signatures. Low 87Sr/86Sr ratios of localized highâtemperature blocky vein calcites point to the involvement of hydrothermal fluids. These calcites show Mnâcontrolled oscillatory growth zonations that probably developed in a closed system out of equilibrium. Later calcite veining (<75 Ma) may have coincided with rotation and/or uplift of the Troodos ophiolite. Microtextures of these vein calcites indicate fluid diffusion and fractureâindependent crystallization pressureâdriven veining. Their variably modified seawater signatures resulted from diffusionârelated fluid interaction with hydrothermal sediments
Search for the standard model Higgs boson in the H to ZZ to 2l 2nu channel in pp collisions at sqrt(s) = 7 TeV
A search for the standard model Higgs boson in the H to ZZ to 2l 2nu decay
channel, where l = e or mu, in pp collisions at a center-of-mass energy of 7
TeV is presented. The data were collected at the LHC, with the CMS detector,
and correspond to an integrated luminosity of 4.6 inverse femtobarns. No
significant excess is observed above the background expectation, and upper
limits are set on the Higgs boson production cross section. The presence of the
standard model Higgs boson with a mass in the 270-440 GeV range is excluded at
95% confidence level.Comment: Submitted to JHE
- âŚ