51 research outputs found

    Ecology of foraminifera and habitat variability in an underwater cave : distinguishing anchialine versus submarine cave environments

    Get PDF
    Author Posting. © Cushman Foundation for Foraminiferal Research, 2011. This article is posted here by permission of Cushman Foundation for Foraminiferal Research for personal use, not for redistribution. The definitive version was published in Journal of Foraminiferal Research 41 (2011): 201-229, doi:10.2113/gsjfr.41.3.201.Seventy-five surface (<4 cm) sediment samples were collected throughout Green Bay Cave System, Bermuda to investigate foraminiferal ecology and habitat variability in underwater coastal caves. This cave is ideal for studying different cave environments because it consists of an anchia-line cave environment connected to a submarine cave environment. Each sediment sample was analyzed for foraminifera, {delta}13Corg, C:N, organic matter content, CaCO3, and granulometry. Measurements of pH, salinity, dissolved oxygen, and temperature in the coastal aquifer distinguished the meteoric lens and saline groundwater. Q-mode cluster analysis on the foraminifera produced a dendrogram that segregates the anchialine and submarine cave environments, and subdivides each environment into distinct habitats consistent with local hydrogeology and sedimentology. The anchialine cave environment near the sinkhole is characterized by two groups of foraminifera: 1) the Meteoric Lens Assemblage living in the brackish meteoric lens within 60 cm of sea level, and 2) the Anchialine Cave Assemblage living in the saline groundwater. Helenina anderseni, Discorinopsis aguayoi, and other marsh foraminifera can persist in the brackish meteoric lens, which transitions into a more diverse assemblage dominated by Bolivina striatula and Rosalina globularis below the halocline. The boundary between the anchialine (terrestrially dominated) and submarine cave (marine-dominated) environments is demarcated by gross foraminiferal and sedimentary changes ({delta}13Corg from –24{per thousand} to –18{per thousand}, C:N from 11.2 to 8.3) that correspond to the maximum point where terrestrial influences routinely impact the cave benthos. Three assemblages of foraminifera inhabit the submarine cave environment: 1) the Entrance Assemblage in the first ~60 m of the submarine cave, dominated by Quinqueloculina; 2) the Circulated Submarine Cave Assemblage dominated by Spirillina vivipara and Triloculina oblonga, and 3) the Isolated Submarine Cave Assemblage dominated by Spirophthalmidium emaciatum. Planktic tintinnids suggest that tidally forced saline groundwater circulation is transporting more nutrients and particulate organic matter to the Circulated Submarine Cave Assemblage than the Isolated Submarine Cave Assemblage. These results indicate that coastal caves are partitioned into specific environments that can be further subdivided into habitats by groundwater masses, sediment fluxes (terrestrial versus marine), and groundwater circulation. This implies that that cave foraminifera can be useful paleohydrogeologic, paleoclimatic, and Quaternary sea-level proxies.The research was only possible with the generous field support from the Bermuda Cavers Group (Bruce Williams, Gil Nolan, Leon Kemp, and Paul Larrett), technical support from Tom Iliffe, and support from the Tucker family. The Johanna M. Resig Fellowship from the Cushman Foundation for Foraminiferal Research and an NSERC Alexander Graham Bell Canada Graduate Scholarship to PvH provided primary research support. Student research grants to PvH from the Geologic Society of America, the Cave Research Foundation, Bermuda Zoological Society, and the Sigma Xi Scientific Research Society provided further support

    Reconstructing 7000 years of North Atlantic hurricane variability using deep-sea sediment cores from the western Great Bahama Bank

    Get PDF
    Author Posting. © American Geophysical Union, 2013. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Paleoceanography 28 (2013): 31–41, doi:10.1002/palo.20012.Available overwash records from coastal barrier systems document significant variability in North Atlantic hurricane activity during the late Holocene. The same climate forcings that may have controlled cyclone activity over this interval (e.g., the West African Monsoon, El Niño–Southern Oscillation (ENSO)) show abrupt changes around 6000 yrs B.P., but most coastal sedimentary records do not span this time period. Establishing longer records is essential for understanding mid-Holocene patterns of storminess and their climatic drivers, which will lead to better forecasting of how climate change over the next century may affect tropical cyclone frequency and intensity. Storms are thought to be an important mechanism for transporting coarse sediment from shallow carbonate platforms to the deep-sea, and bank-edge sediments may offer an unexplored archive of long-term hurricane activity. Here, we develop this new approach, reconstructing more than 7000 years of North Atlantic hurricane variability using coarse-grained deposits in sediment cores from the leeward margin of the Great Bahama Bank. High energy event layers within the resulting archive are (1) broadly correlated throughout an offbank transect of multi-cores, (2) closely matched with historic hurricane events, and (3) synchronous with previous intervals of heightened North Atlantic hurricane activity in overwash reconstructions from Puerto Rico and elsewhere in the Bahamas. Lower storm frequency prior to 4400 yrs B.P. in our records suggests that precession and increased NH summer insolation may have greatly limited hurricane potential intensity, outweighing weakened ENSO and a stronger West African Monsoon—factors thought to be favorable for hurricane development.This research was supported by awards from the Division of Ocean Sciences and the Division of Atmospheric and Geospace Sciences of the National Science Foundation to William B. Curry and an NSERC Post-Doctoral Fellowship to Peter van Hengstum.2013-09-1

    <i>Xibalbanus cozumelensis</i>, a new species of Remipedia (Crustacea) from Cozumel, Mexico, and a molecular phylogeny of <i>Xibalbanus </i>on the Yucatán Peninsula

    No full text
    A new species belonging to the crustacean class Remipedia is described from an anchialine cave system on the island of Cozumel (Mexico), and is illustrated and compared morphologically and molecularly (CO1 and 16S) with closely related taxa. Xibalbanus cozumelensis sp. nov., the first remipede described from Cozumel, is morphologically similar to Xibalbanus tulumensis (Yager, 1987) from the Yucatán Peninsula, but the two species are genetically separate from each other (about 10% in CO1). A phylogenetic (Bayesian) analysis of Yucatán remipede populations based on CO1 and 16S placed them in a monophyletic Xibalbanus (in Xibalbanidae fam. nov.), with X. cozumelensis as most closely related to X. tulumensis. The Yucatán Peninsula and Cozumel have been separate since approx. early Cenozoic (~65 Ma), which suggests allopatric speciation for X. cozumelensis sp. nov. and X. tulumensis. However, the comparatively low genetic divergence between the two species may indicate that there has been gene flow between ‘mainland’ Yucatán and Cozumel long after the geological separation of the two landmasses, e.g., in cave systems under the sea bed, either continuously or sporadically, for example during the Last Glacial Maximum when the sea level was about 120 m lower than today

    Increased hurricane frequency near Florida during Younger Dryas Atlantic Meridional Overturning Circulation slowdown

    Get PDF
    Author Posting. © The Author(s), 2017. This is the author's version of the work. It is posted here under a nonexclusive, irrevocable, paid-up, worldwide license granted to WHOI. It is made available for personal use, not for redistribution. The definitive version was published in Geology 45 (2017): 1047-1050, doi:10.1130/G39270.1.The risk posed by intensification of North Atlantic hurricane activity remains controversial, in part due to a lack of available storm proxy records that extend beyond the relatively stable climates of the late Holocene. Here we present a record of storm-triggered turbidite deposition offshore the Dry Tortugas, south Florida, USA, that spans abrupt transitions in North Atlantic sea-surface temperature and Atlantic Meridional Overturning Circulation (AMOC) during the Younger Dryas (12.9–11.7 k.y. B.P.). Despite potentially hostile conditions for cyclogenesis in the tropical North Atlantic at this time, our record and numerical experiments suggest that strong hurricanes may have regularly impacted Florida. Less severe surface cooling at mid-latitudes (~20–40°N) than across much of the tropical North Atlantic (~10–20°N) in response to AMOC reduction may best explain strong hurricane activity during the Younger Dryas near the Dry Tortugas and, potentially, along the entire southeastern coast of the United States.This work was supported by the U. S. Geological Survey Climate and Land Use Change Research and Development Program (Toomey), the Woods Hole Oceanographic Institution Ocean and Climate Change Institute (Toomey) and National Science Foundation grants (OCE-1356708 to Donnelly; 1356509 to van Hengstum)

    Human arrival and landscape dynamics in the northern Bahamas

    Get PDF
    © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Fall, P. L., van Hengstum, P. J., Lavold-Foote, L., Donnelly, J. P., Albury, N. A., & Tamalavage, A. E. Human arrival and landscape dynamics in the northern Bahamas. Proceedings of the National Academy of Sciences of the United States of America, 118(10), (2021): e2015764118, https://doi.org/10.1073/pnas.2015764118.The first Caribbean settlers were Amerindians from South America. Great Abaco and Grand Bahama, the final islands colonized in the northernmost Bahamas, were inhabited by the Lucayans when Europeans arrived. The timing of Lucayan arrival in the northern Bahamas has been uncertain because direct archaeological evidence is limited. We document Lucayan arrival on Great Abaco Island through a detailed record of vegetation, fire, and landscape dynamics based on proxy data from Blackwood Sinkhole. From about 3,000 to 1,000 y ago, forests dominated by hardwoods and palms were resilient to the effects of hurricanes and cooling sea surface temperatures. The arrival of Lucayans by about 830 CE (2σ range: 720 to 920 CE) is demarcated by increased burning and followed by landscape disturbance and a time-transgressive shift from hardwoods and palms to the modern pine forest. Considering that Lucayan settlements in the southern Bahamian archipelago are dated to about 750 CE (2σ range: 600 to 900 CE), these results demonstrate that Lucayans spread rapidly through the archipelago in less than 100 y. Although precontact landscapes would have been influenced by storms and climatic trends, the most pronounced changes follow more directly from landscape burning and ecosystem shifts after Lucayan arrival. The pine forests of Abaco declined substantially between 1500 and 1670 CE, a period of increased regional hurricane activity, coupled with fires on an already human-impacted landscape. Any future intensification of hurricane activity in the tropical North Atlantic Ocean threatens the sustainability of modern pine forests in the northern Bahamas.This research was supported by NSF Awards GSS-1118340 (P.L.F.), OCE-1356509 (P.J.v.H.), OCE-1703087 (P.J.v.H.), and OCE-1356708 (J.P.D.)

    Revising evidence of hurricane strikes on Abaco Island (the Bahamas) over the last 700 years

    Get PDF
    © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Winkler, T. S., van Hengstum, P. J., Donnelly, J. P., Wallace, E. J., Sullivan, R. M., MacDonald, D., & Albury, N. A. Revising evidence of hurricane strikes on Abaco Island (the Bahamas) over the last 700 years. Scientific Reports, 10(1), (2020): 16556, doi:10.1038/s41598-020-73132-x.The northern Bahamas have experienced more frequent intense-hurricane impacts than almost anywhere else in the Atlantic since 1850 CE. In 2019, category 5 (Saffir-Simpson scale) Hurricane Dorian demonstrated the destructive potential of these natural hazards. Problematically, determining whether high hurricane activity levels remained constant through time is difficult given the short observational record (< 170 years). We present a 700-year long, near-annually resolved stratigraphic record of hurricane passage near Thatchpoint Blue Hole (TPBH) on Abaco Island, The Bahamas. Using longer sediment cores (888 cm) and more reliable age-control, this study revises and temporally expands a previous study from TPBH that underestimated the sedimentation rate. TPBH records at least 13 ≥ category 2 hurricanes per century between 1500 to 1670 CE, which exceeds the 9 ≥ category 2 hurricanes per century within 50 km of TPBH since 1850 CE. The eastern United States also experienced frequent hurricanes from 1500 to 1670 CE, but frequency was depressed elsewhere in the Atlantic Ocean. This suggests that spatial heterogeneity in Atlantic hurricane activity since 1850 CE could have persisted throughout the last millennium. This heterogeneity is impacted by climatic and stochastic forcing, but additional high-resolution paleo-hurricane reconstructions are required to assess the mechanisms that impact regional variability.Field support was provided by Jody Albury and the staff of Friends of the Environment in Marsh Harbour, The Bahamas, and technical support was provided was provided by M. Horgan and S. Molodtsov. Funding for this project was provided by NSF Awards OCE-1356509, OCE-1356708, OCE-1854917, OCE-1903616, and ICER-1854980. The open access publishing fees for this article have been covered by the Texas A&M University Open Access to Knowledge Fund (OAKFund), supported by the University Libraries

    Climate forcing of unprecedented intense-hurricane activity in the last 2000 years

    Get PDF
    © The Author(s), 2015. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Earth's Future 3 (2015): 49–65, doi:10.1002/2014EF000274.How climate controls hurricane variability has critical implications for society is not well understood. In part, our understanding is hampered by the short and incomplete observational hurricane record. Here we present a synthesis of intense-hurricane activity from the western North Atlantic over the past two millennia, which is supported by a new, exceptionally well-resolved record from Salt Pond, Massachusetts (USA). At Salt Pond, three coarse grained event beds deposited in the historical interval are consistent with severe hurricanes in 1991 (Bob), 1675, and 1635 C.E., and provide modern analogs for 32 other prehistoric event beds. Two intervals of heightened frequency of event bed deposition between 1400 and 1675 C.E. (10 events) and 150 and 1150 C.E. (23 events), represent the local expression of coherent regional patterns in intense-hurricane–induced event beds. Our synthesis indicates that much of the western North Atlantic appears to have been active between 250 and 1150 C.E., with high levels of activity persisting in the Caribbean and Gulf of Mexico until 1400 C.E. This interval was one with relatively warm sea surface temperatures (SSTs) in the main development region (MDR). A shift in activity to the North American east coast occurred ca. 1400 C.E., with more frequent severe hurricane strikes recorded from The Bahamas to New England between 1400 and 1675 C.E. A warm SST anomaly along the western North Atlantic, rather than within the MDR, likely contributed to the later active interval being restricted to the east coast.Funding was provided by US National Science Foundation (awards 0903020 and 1356708), the Risk Prediction Initiative at the Bermuda Institute for Ocean Sciences (BIOS), US Department of Energy National Institute for Climate Change Research, National Oceanic and Atmospheric Administration (award NA11OAR431010), and the Dalio Explore Fund

    Last Millennium Hurricane Activity Linked to Endogenous Climate Variability

    Get PDF
    Despite increased Atlantic hurricane risk, projected trends in hurricane frequency in the warming climate are still highly uncertain, mainly due to short instrumental record that limits our understanding of hurricane activity and its relationship to climate. Here we extend the record to the last millennium using two independent estimates: a reconstruction from sedimentary paleohurricane records and a statistical model of hurricane activity using sea surface temperatures (SSTs). We find statistically significant agreement between the two estimates and the late 20th century hurricane frequency is within the range seen over the past millennium. Numerical simulations using a hurricane-permitting climate model suggest that hurricane activity was likely driven by endogenous climate variability and linked to anomalous SSTs of warm Atlantic and cold Pacific. Volcanic eruptions can induce peaks in hurricane activity, but such peaks would likely be too weak to be detected in the proxy record due to large endogenous variability

    1,050 years of hurricane strikes on Long Island in the Bahamas

    Get PDF
    © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Wallace, E. J., Donnelly, J. P., van Hengstum, P. J., Winkler, T. S., McKeon, K., MacDonald, D., d'Entremont, N. E., Sullivan, R. M., Woodruff, J. D., Hawkes, A. D., & Maio, C. 1,050 years of hurricane strikes on long island in the Bahamas. Paleoceanography and Paleoclimatology, 36(3), (2021): e2020PA004156, https://doi.org/10.1029/2020PA004156.Sedimentary records of past hurricane activity indicate centennial-scale periods over the past millennium with elevated hurricane activity. The search for the underlying mechanism behind these active hurricane periods is confounded by regional variations in their timing. Here, we present a new high resolution paleohurricane record from The Bahamas with a synthesis of published North Atlantic records over the past millennium. We reconstruct hurricane strikes over the past 1,050 years in sediment cores from a blue hole on Long Island in The Bahamas. Coarse-grained deposits in these cores date to the close passage of seven hurricanes over the historical interval. We find that the intensity and angle of approach of these historical storms plays an important role in inducing storm surge near the site. Our new record indicates four active hurricane periods on Long Island that conflict with published records on neighboring islands (Andros and Abaco Island). We demonstrate these three islands do not sample the same storms despite their proximity, and we compile these reconstructions together to create the first regional compilation of annually resolved paleohurricane records in The Bahamas. Integrating our Bahamian compilation with compiled records from the U.S. coastline indicates basin-wide increased storminess during the Medieval Warm Period. Afterward, the hurricane patterns in our Bahamian compilation match those reconstructed along the U.S. East Coast but not in the northeastern Gulf of Mexico. This disconnect may result from shifts in local environmental conditions in the North Atlantic or shifts in hurricane populations from straight-moving to recurving storms over the past millennium.This work was funded by the National Science Foundation Graduate Research Fellowship (to E. J. W.), the Dalio Explore Foundation, and National Science Foundation grant OCE-1356708 (to J. P. D. and P. J. vH.)

    Historically unprecedented Northern Gulf of Mexico hurricane activity from 650 to 1250 CE

    Get PDF
    © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Rodysill, J. R., Donnelly, J. P., Sullivan, R., Lane, P. D., Toomey, M., Woodruff, J. D., Hawkes, A. D., MacDonald, D., d'Entremont, N., McKeon, K., Wallace, E., & van Hengstum, P. J. Historically unprecedented Northern Gulf of Mexico hurricane activity from 650 to 1250 CE. Scientific Reports, 10(1), (2020): 19092. doi:10.1038/s41598-020-75874-0.Hurricane Michael (2018) was the first Category 5 storm on record to make landfall on the Florida panhandle since at least 1851 CE (Common Era), and it resulted in the loss of 59 lives and $25 billion in damages across the southeastern U.S. This event placed a spotlight on recent intense (exceeding Category 4 or 5 on the Saffir-Simpson Hurricane Wind Scale) hurricane landfalls, prompting questions about the natural range in variability of hurricane activity that the instrumental record is too short to address. Of particular interest is determining whether the frequency of recent intense hurricane landfalls in the northern Gulf of Mexico (GOM) is within or outside the natural range of intense hurricane activity prior to 1851 CE. In this study, we identify intense hurricane landfalls in northwest Florida during the past 2000 years based on coarse anomaly event detection from two coastal lacustrine sediment archives. We identified a historically unprecedented period of heightened storm activity common to four Florida panhandle localities from 650 to 1250 CE and a shift to a relatively quiescent storm climate in the GOM spanning the past six centuries. Our study provides long-term context for events like Hurricane Michael and suggests that the observational period 1851 CE to present may underrepresent the natural range in landfalling hurricane activity.Funding for this project was provided by the Strategic Environmental Research and Development Program (SERDP) grant and NSF awards 0903020, 1902463, and 1854980 awarded to Jeffrey Donnelly, and the USGS Land Change Science Program
    • …
    corecore