617 research outputs found

    Enhancment of dense urban digital surface models from VHR optical satellite stereo data by pre-segmentation and object detection

    Get PDF
    The generation of digital surface models (DSM) of urban areas from very high resolution (VHR) stereo satellite imagery requires advanced methods. In the classical approach of DSM generation from stereo satellite imagery, interest points are extracted and correlated between the stereo mates using an area based matching followed by a least-squares sub-pixel refinement step. After a region growing the 3D point list is triangulated to the resulting DSM. In urban areas this approach fails due to the size of the correlation window, which smoothes out the usual steep edges of buildings. Also missing correlations as for partly – in one or both of the images – occluded areas will simply be interpolated in the triangulation step. So an urban DSM generated with the classical approach results in a very smooth DSM with missing steep walls, narrow streets and courtyards. To overcome these problems algorithms from computer vision are introduced and adopted to satellite imagery. These algorithms do not work using local optimisation like the area-based matching but try to optimize a (semi-)global cost function. Analysis shows that dynamic programming approaches based on epipolar images like dynamic line warping or semiglobal matching yield the best results according to accuracy and processing time. These algorithms can also detect occlusions – areas not visible in one or both of the stereo images. Beside these also the time and memory consuming step of handling and triangulating large point lists can be omitted due to the direct operation on epipolar images and direct generation of a so called disparity image fitting exactly on the first of the stereo images. This disparity image – representing already a sort of a dense DSM – contains the distances measured in pixels in the epipolar direction (or a no-data value for a detected occlusion) for each pixel in the image. Despite the global optimization of the cost function many outliers, mismatches and erroneously detected occlusions remain, especially if only one stereo pair is available. To enhance these dense DSM – the disparity image – a pre-segmentation approach is presented in this paper. Since the disparity image is fitting exactly on the first of the two stereo partners (beforehand transformed to epipolar geometry) a direct correlation between image pixels and derived heights (the disparities) exist. This feature of the disparity image is exploited to integrate additional knowledge from the image into the DSM. This is done by segmenting the stereo image, transferring the segmentation information to the DSM and performing a statistical analysis on each of the created DSM segments. Based on this analysis and spectral information a coarse object detection and classification can be performed and in turn the DSM can be enhanced. After the description of the proposed method some results are shown and discussed

    Application of Generalized Partial Volume Estimation for Mutual Information based Registration of High Resolution SAR and Optical Imagery

    Get PDF
    Mutual information (MI) has proven its effectiveness for automated multimodal image registration for numerous remote sensing applications like image fusion. We analyze MI performance with respect to joint histogram bin size and the employed joint histogramming technique. The affect of generalized partial volume estimation (GPVE) utilizing B-spline kernels with different histogram bin sizes on MI performance has been thoroughly explored for registration of high resolution SAR (TerraSAR-X) and optical (IKONOS-2) satellite images. Our experiments highlight possibility of an inconsistent MI behavior with different joint histogram bin size which gets reduced with an increase in order of B-spline kernel employed in GPVE. In general, bin size reduction and/or increasing B-spline order have a smoothing affect on MI surfaces and even the lowest order B-spline with a suitable histogram bin size can achieve same pixel level accuracy as achieved by the higher order kernels more consistently

    Classification accuracy increase using multisensor data fusion

    Get PDF
    The practical use of very high resolution visible and near-infrared (VNIR) data is still growing (IKONOS, Quickbird, GeoEye-1, etc.) but for classification purposes the number of bands is limited in comparison to full spectral imaging. These limitations may lead to the confusion of materials such as different roofs, pavements, roads, etc. and therefore may provide wrong interpretation and use of classification products. Employment of hyperspectral data is another solution, but their low spatial resolution (comparing to multispectral data) restrict their usage for many applications. Another improvement can be achieved by fusion approaches of multisensory data since this may increase the quality of scene classification. Integration of Synthetic Aperture Radar (SAR) and optical data is widely performed for automatic classification, interpretation, and change detection. In this paper we present an approach for very high resolution SAR and multispectral data fusion for automatic classification in urban areas. Single polarization TerraSAR-X (SpotLight mode) and multispectral data are integrated using the INFOFUSE framework, consisting of feature extraction (information fission), unsupervised clustering (data representation on a finite domain and dimensionality reduction), and data aggregation (Bayesian or neural network). This framework allows a relevant way of multisource data combination following consensus theory. The classification is not influenced by the limitations of dimensionality, and the calculation complexity primarily depends on the step of dimensionality reduction. Fusion of single polarization TerraSAR-X, WorldView-2 (VNIR or full set), and Digital Surface Model (DSM) data allow for different types of urban objects to be classified into predefined classes of interest with increased accuracy. The comparison to classification results of WorldView-2 multispectral data (8 spectral bands) is provided and the numerical evaluation of the method in comparison to other established methods illustrates the advantage in the classification accuracy for many classes such as buildings, low vegetation, sport objects, forest, roads, rail roads, etc

    Accuracy assessment of Digital Surface Models generated by Semiglobal matching algorithm using Lidar data

    Get PDF
    To measure the accuracy of Digital Surface Models (DSMs) generated by high resolution satellite images (HRSI) using semi-global matching algorithm in comparison with LIDAR DSMs, two different test areas with different properties and corresponding attributes and magnitudes of errors are considered. Error characteristics are classified as systematic and gross errors and significance of them to measure the accuracy of DSMs are evaluated. In this manner and to avoid the influence of outliers in accuracy assessment robust statistical methods are proposed. According to final values obtained for two test areas it can be concluded that the performance of DSMs generated by stereo matching for mountainous wooden areas in respect to the accuracy of LIDAR DSM are poor. In contrast, in case of residential urban areas the quality of the DSM generated by HRSI is able to follow the accuracy of LIDAR data

    Real Time Airborne Monitoring for Disaster and Traffic Applications

    Get PDF
    Remote sensing applications like disaster or mass event monitoring need the acquired data and extracted information within a very short time span. Airborne sensors can acquire the data quickly and on-board processing combined with data downlink is the fastest possibility to achieve this requirement. For this purpose, a new low-cost airborne frame camera system has been developed at the German Aerospace Center (DLR) named 3K-camera. The pixel size and swath width range between 15 cm to 50 cm and 2.5 km to 8 km respectively. Within two minutes an area of approximately 10 km x 8 km can be monitored. Image data are processed onboard on five computers using data from a real time GPS/IMU system including direct georeferencing. Due to high frequency image acquisition (3 images/second) the monitoring of moving objects like vehicles and people is performed allowing wide area detailed traffic monitoring

    Building Detection using Aerial Images and Digital Surface Models

    Get PDF
    In this paper a method for building detection in aerial images based on variational inference of logistic regression is proposed. It consists of three steps. In order to characterize the appearances of buildings in aerial images, an effective bag-of-Words (BoW) method is applied for feature extraction in the first step. In the second step, a classifier of logistic regression is learned using these local features. The logistic regression can be trained using different methods. In this paper we adopt a fully Bayesian treatment for learning the classifier, which has a number of obvious advantages over other learning methods. Due to the presence of hyper prior in the probabilistic model of logistic regression, approximate inference methods have to be applied for prediction. In order to speed up the inference, a variational inference method based on mean field instead of stochastic approximation such as Markov Chain Monte Carlo is applied. After the prediction, a probabilistic map is obtained. In the third step, a fully connected conditional random field model is formulated and the probabilistic map is used as the data term in the model. A mean field inference is utilized in order to obtain a binary building mask. A benchmark data set consisting of aerial images and digital surfaced model (DSM) released by ISPRS for 2D semantic labeling is used for performance evaluation. The results demonstrate the effectiveness of the proposed method

    Refined Building Change Detection in Satellite Stereo Imagery Based on Belief Functions and Reliabilities

    Get PDF
    Digital Surface Models (DSMs) generated from satellite stereo imagery provide valuable but not comprehensive information for building change detection. Therefore, belief functions have been introduced to solve this problem by fusing DSM information with changes extracted from images. However, miss-detection can not be avoided if the DSMs are containing large region of wrong height values. A refined workflow is thereby proposed by adopting the initial disparity map to generate a reliability map. This reliability map is then built in the fusion model. The reliability map has been tested in both Dempster-Shafer Theory (DST), and Dezert-Smarandache Theory (DSmT) frameworks. The results have been validated by comparing to the manually extracted change reference mask

    DSM Building Shape Refinement from Combined Remote Sensing Images based on Wnet-cGANs

    Get PDF
    We describe the workflow of a digital surface models (DSMs) refinement algorithm using a hybrid conditional generative adversarial network (cGAN) where the generative part consists of two parallel networks merged at the last stage forming a WNet architecture. The inputs to the so-called WNet-cGAN are stereo DSMs and panchromatic (PAN) half-meter resolution satellite images. Fusing these helps to propagate fine detailed information from a spectral image and complete the missing 3D knowledge from a stereo DSM about building shapes. Besides, it refines the building outlines and edges making them more rectangular and sharp

    Alphabet-based Multisensory Data Fusion and Classification using Factor Graphs

    Get PDF
    The way of multisensory data integration is a crucial step of any data fusion method. Different physical types of sensors (optic, thermal, acoustic, or radar) with different resolutions, and different types of GIS digital data (elevation, vector map) require a proper method for data integration. Incommensurability of the data may not allow to use conventional statistical methods for fusion and processing of the data. A correct and established way of multisensory data integration is required to deal with such incommensurable data as the employment of an inappropriate methodology may lead to errors in the fusion process. To perform a proper multisensory data fusion several strategies were developed (Bayesian, linear (log linear) opinion pool, neural networks, fuzzy logic approaches). Employment of these approaches is motivated by weighted consensus theory, which lead to fusion processes that are correctly performed for the variety of data properties

    Graph Search and its Application in Building Extraction from High Resolution Remote Sensing Imagery

    Get PDF
    Building extraction using Hough transformation and cycle detection
    • 

    corecore