14 research outputs found

    Quantitative iTRAQ-Based Proteomic Identification of Candidate Biomarkers for Diabetic Nephropathy in Plasma of Type 1 Diabetic Patients

    Get PDF
    # The Author(s) 2010. This article is published with open access at Springerlink.com Introduction As part of a clinical proteomics programme focused on diabetes and its complications, it was our goal to investigate the proteome of plasma in order to find improved candidate biomarkers to predict diabetic nephropathy. Methods Proteins derived from plasma from a crosssectiona

    Ser649 and Ser650 Are the Major Determinants of Protein Kinase A-Mediated Activation of Human Hormone-Sensitive Lipase against Lipid Substrates

    Get PDF
    BACKGROUND: Hormone-sensitive lipase (HSL) is a key enzyme in the mobilization of fatty acids from stored triacylglycerols. Its activity is regulated by reversible protein phosphorylation. In rat HSL Ser563, Ser659 and Ser660 have been shown to be phosphorylated by protein kinase A (PKA) in vitro as well as in vivo. METHODOLOGY/PRINCIPAL FINDINGS: In this study we employed site-directed mutagenesis, in vitro phosphorylation and mass spectrometry to show that in vitro phosphorylation of human HSL by PKA occurs primarily on Ser649 and Ser650 (Ser659 and Ser660 in rat HSL). The wild type enzyme and four mutants were expressed in C-terminally His-tagged form in Sf9 insect cells and purified to homogeneity. HSL variants in which Ser552 and/or Ser554 were mutated to Ala or Glu retained both lipolytic and non-lipolytic activity and were phosphorylated by PKA and activated to a similar extent as the wild type enzyme. (32)P-labeling studies revealed that the bulk of the phosphorylation was on the Ser649/Ser650 site, with only a minor phosphorylation of Ser552 and Ser554. MS/MS analysis demonstrated that the peptide containing Ser649 and Ser650 was primarily phosphorylated on Ser650. The mutant lacking all four serines had severely reduced lipolytic activity, but a lesser reduction in non-lipolytic activity, had S(0.5) values for p-nitrophenol butyrate and triolein comparable to those of wild type HSL and was not phosphorylated by PKA. PKA phosphorylation of the wild type enzyme resulted in an increase in both the maximum turnover and S(0,5) using the TO substrate. CONCLUSIONS: Our results demonstrate that PKA activates human HSL against lipid substrates in vitro primarily through phosphorylation of Ser649 and Ser650. In addition the results suggest that Ser649 and Ser650 are located in the vicinity of a lipid binding region and that PKA phosphorylation controls the accessibility of this region
    corecore