1,224 research outputs found

    Plant Diversity and Cover after Wildfire on Anthropogenically Disturbed and Undisturbed Sites in Subarctic Upland Picea mariana Forest

    Get PDF
    Postfire development of cover and diversity was studied in an upland Picea mariana-dominated forest in the Canadian Subarctic. Short-term vegetation responses of 10- and 22-year-old cleared rights-of-way and a forest site were investigated two and three growing seasons after a wildfire. Prefire and postfire investigation of the study site allowed direct comparison of species cover and frequency values, as well as the Shannon-Wiener diversity index, before and after the fire. The fire considerably reduced diversity on all sites. Species diversity increased with the level of prefire disturbance. Prefire disturbance influenced the fire's characteristics by altering the fuel load and soil moisture, which in turn affected the postfire revegetation through different soil and microclimatic conditions. The sites that were most severely disturbed before the fire experienced the most rapid revegetation, including the highest diversity index and highest plant cover. Of the sites that were undisturbed before the fire, the natural drainage swales offered the best growing conditions after the burn. Furthermore, prefire disturbance increased the patchiness of the burned area, and the residual flora of unburned patches added to postfire floristic diversity.On a étudié le développement du couvert et de la diversité après un incendie dans une forêt de haute terre dominée par Picea mariana, au Canada subarctique. Les réactions à court terme des plantes poussant dans les emprises dégagées vieilles de 10 et 22 ans, ainsi qu'un site forestier ont été l'objet de recherches deux et trois saisons de croissance après un incendie de forêt. Les travaux réalisés sur le site de l'étude avant et après le feu ont permis une comparaison directe du couvert et de la fréquence des espèces ainsi que de l'index de diversité Shannon-Wiener avant et après le feu. L'incendie a considérablement réduit la diversité sur tous les sites. La diversité des espèces augmentait avec le niveau de perturbation existant avant l'incendie. La perturbation pré-incendie a influencé la nature du feu en modifiant la masse de combustible et l'humidité du sol, qui, à leur tour, ont affecté le reverdissement post-incendie en modifiant l'état du sol et les conditions microclimatiques. Les sites qui avaient été le plus perturbés avant le feu ont connu le reverdissement le plus rapide, y compris l'index de diversité et le couvert végétal les plus élevés. Parmi les sites qui n'avaient pas été perturbés avant l'incendie, les dépressions de drainage naturelles offraient les meilleures conditions de croissance après le feu. De plus, la perturbation pré-incendie a intensifié le morcellement de la surface brûlée, et la flore résiduelle des parcelles non brûlées a ajouté à la diversité floristique présente après l'incendie

    Driving human motor cortical oscillations leads to behaviorally relevant changes in local GABAA inhibition: a tACS-TMS study

    Get PDF
    Beta and gamma oscillations are the dominant oscillatory activity in the human motor cortex (M1). However, their physiological basis and precise functional significance remain poorly understood. Here, we used transcranial magnetic stimulation (TMS) to examine the physiological basis and behavioral relevance of driving beta and gamma oscillatory activity in the human M1 using transcranial alternating current stimulation (tACS). tACS was applied using a sham-controlled crossover design at individualized intensity for 20 min and TMS was performed at rest (before, during, and after tACS) and during movement preparation (before and after tACS). We demonstrated that driving gamma frequency oscillations using tACS led to a significant, duration-dependent decrease in local resting-state GABAA inhibition, as quantified by short interval intracortical inhibition. The magnitude of this effect was positively correlated with the magnitude of GABAA decrease during movement preparation, when gamma activity in motor circuitry is known to increase. In addition, gamma tACS-induced change in GABAA inhibition was closely related to performance in a motor learning task such that subjects who demonstrated a greater increase in GABAA inhibition also showed faster short-term learning. The findings presented here contribute to our understanding of the neurophysiological basis of motor rhythms and suggest that tACS may have similar physiological effects to endogenously driven local oscillatory activity. Moreover, the ability to modulate local interneuronal circuits by tACS in a behaviorally relevant manner provides a basis for tACS as a putative therapeutic intervention.SIGNIFICANCE STATEMENT Gamma oscillations have a vital role in motor control. Using a combined tACS-TMS approach, we demonstrate that driving gamma frequency oscillations modulates GABAA inhibition in the human motor cortex. Moreover, there is a clear relationship between the change in magnitude of GABAA inhibition induced by tACS and the magnitude of GABAA inhibition observed during task-related synchronization of oscillations in inhibitory interneuronal circuits, supporting the hypothesis that tACS engages endogenous oscillatory circuits. We also show that an individual's physiological response to tACS is closely related to their ability to learn a motor task. These findings contribute to our understanding of the neurophysiological basis of motor rhythms and their behavioral relevance and offer the possibility of developing tACS as a therapeutic tool

    Delocalization of ultracold atoms in a disordered potential due to light scattering

    Full text link
    We numerically study the expansion dynamics of ultracold atoms in a one-dimensional disordered potential in the presence of a weak position measurement of the atoms. We specifically consider this position measurement to be realized by a combination of an external laser and a periodic array of optical microcavities along a waveguide. The position information is acquired through the scattering of a near-resonant laser photon into a specific eigenmode of one of the cavities. The time evolution of the atomic density in the presence of this light scattering mechanism is described within a Lindblad master equation approach, which is numerically implemented using the Monte Carlo wave function technique. We find that an arbitrarily weak rate of photon emission leads to a breakdown of Anderson localization of the atoms.Comment: 7 pages, 8 figure

    Improving Binding Specificity of Pharmacological Chaperones That Target Mutant Superoxide Dismutase-1 Linked to Familial Amyotrophic Lateral Sclerosis Using Computational Methods

    Get PDF
    We recently described a set of drug-like molecules obtained from an in silico screen that stabilize mutant superoxide dismutase-1 (SOD-1) linked to familial amyotrophic lateral sclerosis (ALS) against unfolding and aggregation but exhibited poor binding specificity toward SOD-1 in presence of blood plasma. A reasonable but not a conclusive model for the binding of these molecules was proposed on the basis of restricted docking calculations and site-directed mutagenesis of key residues at the dimer interface. A set of hydrogen bonding constraints obtained from these experiments were used to guide docking calculations with compound library around the dimer interface. A series of chemically unrelated hits were predicted, which were experimentally tested for their ability to block aggregation. At least six of the new molecules exhibited high specificity of binding toward SOD-1 in the presence of blood plasma. These molecules represent a new class of molecules for further development into clinical candidates

    Slow Logarithmic Decay of Magnetization in the Zero Temperature Dynamics of an Ising Spin Chain: Analogy to Granular Compaction

    Full text link
    We study the zero temperature coarsening dynamics in an Ising chain in presence of a dynamically induced field that favors locally the `-' phase compared to the `+' phase. At late times, while the `+' domains still coarsen as t1/2t^{1/2}, the `-' domains coarsen slightly faster as t1/2log(t)t^{1/2}\log (t). As a result, at late times, the magnetization decays slowly as, m(t)=1+const./log(t)m(t)=-1 +{\rm const.}/{\log (t)}. We establish this behavior both analytically within an independent interval approximation (IIA) and numerically. In the zero volume fraction limit of the `+' phase, we argue that the IIA becomes asymptotically exact. Our model can be alternately viewed as a simple Ising model for granular compaction. At late times in our model, the system decays into a fully compact state (where all spins are `-') in a slow logarithmic manner 1/log(t)\sim 1/{\log (t)}, a fact that has been observed in recent experiments on granular systems.Comment: 4 pages Revtex, 3 eps figures, supersedes cond-mat/000221

    Integration of deep transcriptome and proteome analyses reveals the components of alkaloid metabolism in opium poppy cell cultures

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Papaver somniferum </it>(opium poppy) is the source for several pharmaceutical benzylisoquinoline alkaloids including morphine, the codeine and sanguinarine. In response to treatment with a fungal elicitor, the biosynthesis and accumulation of sanguinarine is induced along with other plant defense responses in opium poppy cell cultures. The transcriptional induction of alkaloid metabolism in cultured cells provides an opportunity to identify components of this process via the integration of deep transcriptome and proteome databases generated using next-generation technologies.</p> <p>Results</p> <p>A cDNA library was prepared for opium poppy cell cultures treated with a fungal elicitor for 10 h. Using 454 GS-FLX Titanium pyrosequencing, 427,369 expressed sequence tags (ESTs) with an average length of 462 bp were generated. Assembly of these sequences yielded 93,723 unigenes, of which 23,753 were assigned Gene Ontology annotations. Transcripts encoding all known sanguinarine biosynthetic enzymes were identified in the EST database, 5 of which were represented among the 50 most abundant transcripts. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) of total protein extracts from cell cultures treated with a fungal elicitor for 50 h facilitated the identification of 1,004 proteins. Proteins were fractionated by one-dimensional SDS-PAGE and digested with trypsin prior to LC-MS/MS analysis. Query of an opium poppy-specific EST database substantially enhanced peptide identification. Eight out of 10 known sanguinarine biosynthetic enzymes and many relevant primary metabolic enzymes were represented in the peptide database.</p> <p>Conclusions</p> <p>The integration of deep transcriptome and proteome analyses provides an effective platform to catalogue the components of secondary metabolism, and to identify genes encoding uncharacterized enzymes. The establishment of corresponding transcript and protein databases generated by next-generation technologies in a system with a well-defined metabolite profile facilitates an improved linkage between genes, enzymes, and pathway components. The proteome database represents the most relevant alkaloid-producing enzymes, compared with the much deeper and more complete transcriptome library. The transcript database contained full-length mRNAs encoding most alkaloid biosynthetic enzymes, which is a key requirement for the functional characterization of novel gene candidates.</p

    Modulation of Long-Range Connectivity Patterns via Frequency-Specific Stimulation of Human Cortex

    Get PDF
    There is increasing interest in how the phase of local oscillatory activity within a brain area determines the long-range functional connectivity of that area. For example, increasing convergent evidence from a range of methodologies suggests that beta (20 Hz) oscillations may play a vital role in the function of the motor system [1-5]. The "communication through coherence" hypothesis posits that the precise phase of coherent oscillations in network nodes is a determinant of successful communication between them [6, 7]. Here we set out to determine whether oscillatory activity in the beta band serves to support this theory within the cortical motor network in vivo. We combined non-invasive transcranial alternating-current stimulation (tACS) [8-12] with resting-state functional MRI (fMRI) [13] to follow both changes in local activity and long-range connectivity, determined by inter-areal blood-oxygen-level-dependent (BOLD) signal correlation, as a proxy for communication in the human cortex. Twelve healthy subjects participated in three fMRI scans with 20 Hz, 5 Hz, or sham tACS applied separately on each scan. Transcranial magnetic stimulation (TMS) at beta frequency has previously been shown to increase local activity in the beta band [14] and to modulate long-range connectivity within the default mode network [15]. We demonstrated that beta-frequency tACS significantly changed the connectivity pattern of the stimulated primary motor cortex (M1), without changing overall local activity or network connectivity. This finding is supported by a simple phase-precession model, which demonstrates the plausibility of the results and provides emergent predictions that are consistent with our empirical findings. These findings therefore inform our understanding of how local oscillatory activity may underpin network connectivity

    Complement alone drives efficacy of a chimeric antigonococcal monoclonal antibody

    Get PDF
    Multidrug-resistant Neisseria gonorrhoeae is a global health problem. Monoclonal antibody (mAb) 2C7 recognizes a gonococcal lipooligosaccharide epitope that is expressed by \u3e 95% of clinical isolates and hastens gonococcal vaginal clearance in mice. Chimeric mAb 2C7 (human immunoglobulin G1 [IgG1]) with an E430G Fc modification that enhances Fc:Fc interactions and hexamerization following surface-target binding and increases complement activation (HexaBody technology) showed significantly greater C1q engagement and C4 and C3 deposition compared to mAb 2C7 with wild-type Fc. Greater complement activation by 2C7-E430G Fc translated to increased bactericidal activity in vitro and, consequently, enhanced efficacy in mice, compared with Fc-unmodified chimeric 2C7. Gonococci bind the complement inhibitors factor H (FH) and C4b-binding protein (C4BP) in a human-specific manner, which dampens antibody (Ab)-mediated complement-dependent killing. The variant 2C7-E430G Fc overcame the barrier posed by these inhibitors in human FH/C4BP transgenic mice, for which a single 1 mug intravenous dose cleared established infection. Chlamydia frequently coexists with and exacerbates gonorrhea; 2C7-E430G Fc also proved effective against gonorrhea in gonorrhea/chlamydia-coinfected mice. Complement activation alone was necessary and sufficient for 2C7 function, evidenced by the fact that (1) complement-inactive Fc modifications that engaged Fc gamma receptor (FcgammaR) rendered 2C7 ineffective, nonetheless; (2) 2C7 was nonfunctional in C1q-/- mice, when C5 function was blocked, or in C9-/- mice; and (3) 2C7 remained effective in neutrophil-depleted mice and in mice treated with PMX205, a C5a receptor (C5aR1) inhibitor. We highlight the importance of complement activation for antigonococcal Ab function in the genital tract. Elucidating the correlates of protection against gonorrhea will inform the development of Ab-based gonococcal vaccines and immunotherapeutics

    Non-Invasive Brain Stimulation in Conversion (Functional) Weakness and Paralysis: A Systematic Review and Future Perspectives

    Get PDF
    Conversion (functional) limb weakness or paralysis (FW) can be a debilitating condition, and often causes significant distress or impairment in social, occupational, or other important areas of functioning. Most treatment concepts are multi-disciplinary, containing a behavioral approach combined with a motor learning program. Non-invasive brain stimulation (NIBS) methods, such as electroconvulsive therapy (ECT), and transcranial magnetic stimulation (TMS) have been used in the past few decades to treat FW. In order to identify all published studies that used NIBS methods such as ECT, TMS and transcranial direct current stimulation (tDCS) for treating FW patients a systematic review of the literature was conducted in PubMed and Web of Science. In a second step, narratives were used to retrospectively determine nominal CGI-I (Clinical Global Impression scale–Improvement) scores to describe approximate changes of FW symptoms. We identified two articles (case reports) with ECT used for treatment of FW, five with TMS with a total of 86 patients, and none with tDCS. In 75 out of 86 patients treated with repetitive (r)TMS a nominal CGI-I score could be estimated, showing a satisfactory short-term improvement. Fifty-four out of seventy-five identified patients (72%) had a CGI-I score of 1 (very much improved), 13 (17%) a score of 2 (much improved), 5 (7%) a score of 3 (minimally improved), and 3 (5%) remained unchanged (CGI-I = 4). In no case did patients worsen after rTMS treatment, and no severe adverse effects were reported. At follow-up, symptom improvement was not quantifiable in terms of CGI-I for the majority of the cases. Patients treated with ECT showed a satisfactory short-term response (CGI-I = 2), but deterioration of FW symptoms at follow-up. Despite the predominantly positive results presented in the identified studies and satisfactory levels of efficacy measured with retrospectively calculated nominal CGI-I scores, any assumption of a beneficial effect of NIBS in FW has to be seen with caution, as only few articles could be retrieved and their quality was mostly poor. This article elucidates how NIBS might help in FW and gives recommendations for future study designs using NIBS in this condition
    corecore