62 research outputs found

    Bicatalytic Multistep Reactions En Route to the One-Pot Total Synthesis of Complex Molecules: Easy Access to Chromene and 1,2-Dihydroquinoline Derivatives from Simple Substrates

    Get PDF
    By combining nanocatalysis and base-catalysis, a novel one-pot multistep process was found for the synthesis of substituted heterocycles of biological relevance from simple substrates. It is based on an initial Au/O2 oxidation of allylic alcohols followed by a base-catalysed tandem hetero-Michael/aldolisation/crotonisation with ortho-hydroxy or ortho-amino benzaldehydes. The flexibility of the reaction even allowed the benzaldehyde partner to be prepared in situ in an example of one-pot/5-steps process

    Transfer hydrogenation of methyl levulinate with methanol to gamma valerolactone over Cu-ZrO<sub>2</sub>:A sustainable approach to liquid fuels

    Get PDF
    Cu-ZrO2 is demonstrated to be a highly effective catalyst for the transfer hydrogenation of methyl levulinate to γ-valerolactone, using methanol as the hydrogen donor. The emergence of several new strategies for synthesising green methanol, underlines its potential as a sustainable hydrogen source for such transformations. Transfer hydrogenation of methyl levulinate over Cu-ZrO2 was determined to proceed through a two-step ‘hydrogen borrowing’ process. The first step involves methanol dehydrogenation (rate limiting) and the second, levulinate reduction. This proof-of-concept study demonstrates that methanol can be used effectively as a hydrogen source for such transformations when a suitable catalyst is employed

    Cinnamyl alcohol oxidation using supported bimetallic Au-Pd nanoparticles: An optimization of metal ratio and investigation of the deactivation mechanism under autoxidation conditions

    Get PDF
    The aerobic oxidation of cinnamyl alcohol in toluene under autoxidation conditions has been studied using a range of 1 wt% Au–Pd/TiO2 catalysts. The catalysts have been studied to determine the effect of preparation method (impregnation and sol immobilisation) and metal ratio on the conversion of cinnamyl alcohol and the selectivity to cinnamaldehyde. The catalysts prepared by sol-immobilisation demonstrate higher selectivity to the desired aldehyde than the analogous impregnation materials. The most active catalyst was found to be 0.75 wt% Au–0.25 wt% Pd/TiO2 prepared by sol-immobilisation and this demonstrates the importance of metal ratio optimisation in this catalytic process. Furthermore, this metal ratio was found to be most stable under the reactions conditions with little change observed over multiple uses

    Oxidative carboxylation of 1-decene to 1,2-decylene carbonate

    Get PDF
    Cyclic carbonates are valuable chemicals for the chemical industry and thus, their efficient synthesis is essential. Commonly, cyclic carbonates are synthesised in a two-step process involving the epoxidation of an alkene and a subsequent carboxylation to the cyclic carbonate. To couple both steps into a direct oxidative carboxylation reaction would be desired from an economical view point since additional work-up procedures can be avoided. Furthermore, the efficient sequestration of CO2, a major greenhouse gas, would also be highly desirable. In this work, the oxidative carboxylation of 1-decene is investigated using supported gold catalysts for the epoxidation step and tetrabutylammonium bromide in combination with zinc bromide for the cycloaddition of carbon dioxide in the second step. The compatibility of the catalysts for both steps is explored and a detailed study of catalyst deactivation using X-ray photoelectron spectroscopy and scanning electron microscopy is reported. Promising selectivity of the 1,2-decylene carbonate is observed using a one-pot two-step approach

    The selective oxidation of n-butanol to butyraldehyde by oxygen using stable Pt-based nanoparticulate catalysts: an efficient route for upgrading aqueous biobutanol

    Get PDF
    Supported Pt nanoparticles are shown to be active and selective towards butyraldehyde in the base-free oxidation of n-butanol by O2 in an aqueous phase. The formation of butyric acid as a by-product promoted the leaching of Pt and consequently the activity of the catalysts decreased upon reuse. Characterisation showed that the degree to which Pt leached from the catalysts was related to both the metal–support interaction and metal particle size. A catalyst active and stable (<1% metal leaching) in the aqueous reaction medium was obtained when Pt nanoparticles were supported on activated carbon and prepared by a chemical vapour impregnation method. The presence of n-butanol in the aqueous medium is required to inhibit the over oxidation of butyraldehyde to butyric acid. Consequently, high selectivities towards butyraldehyde can only be obtained at intermediate n-butanol conversion

    Three step synthesis of benzylacetone and 4-(4-methoxyphenyl)butan-2-one in flow using micropacked bed reactors

    Get PDF
    The synthesis of benzylacetone from benzyl alcohol and of 4-(4-methoxyphenyl)butan-2-one from 4-methoxybenzyl alcohol, which were previously performed in a batch cascade, were successfully performed in a telescoped flow system consisting of three micropacked bed reactors and a tube-in-tube membrane to remove oxygen. The system consisted of approximately 10 mg of 1 wt% AuPd/TiO2 catalyst for oxidation, 150-250 mg of anatase TiO2 for C-C coupling and 10 mg of 1 wt% Pt/TiO2 for reduction, operating at 115 °C, 130 °C and 120 °C respectively. Oxygen and hydrogen flowrates were 2 and 1.5 NmL/min and alcohol solution inlet flowrates were 10-80 µL/min, while the system operated at a back pressure of 5 barg. This system achieved significantly increased yields of benzylacetone compared to the batch cascade (56% compared to 8%) and slightly increased yields of 4-(4-methoxyphenyl)butan-2-one (48% compared to 41% when using the same catalyst supports). The major advantage of the telescoped flow system was the ability to separate the three reactions, so that each reaction could have its own catalyst and operating conditions, which led to significant process intensification

    The role of Mg(OH)2 in the so-called 'base-free' oxidation of glycerol with AuPd catalysts

    Get PDF
    Mg(OH)2 and Mg(OH)2 containing materials can provide excellent performance as supports for AuPd nanoparticles for oxidation of glycerol in the absence of base, which is considered to be a result of additional basic sites on the support's surface. However, its influence on the reaction solution is not generally discussed. In this paper, we examine, in detail, the relationship between the basic Mg(OH)2 support and AuPd nanoparticles using four types of catalyst, where the physical interaction between Mg(OH)2 and AuPd was adjusted. It was found that the activity of the AuPd nanoparticles increased with the amount of Mg(OH)2 added under base-free conditions, regardless of its interaction with the noble metals. In order to investigate how Mg(OH)2 affected glycerol oxidation, detailed information about the performance of AuPd/Mg(OH)2, physically mixed (AuPd/C+Mg(OH)2) and (AuPd/C+NaHCO3) was obtained and compared. Furthermore, NaOH and Mg(OH)2 were added during the reaction using AuPd/C. All these results indicate that the distinctive and outstanding performance of Mg(OH)2 supported catalysts in base-free condition is in fact directly related to its ability to affect the pH during the reaction and as such, assists with the initial activation of the primary alcohol which is considered to be the rate determining step in the reactionperformance of Mg(OH)2 supported catalysts in base-free condition could be correlated to its ability to affect the pH during the reaction

    The Over-Riding Role of Autocatalysis in Allylic Oxidation

    Get PDF
    In this paper we aim to highlight the need to consider the possible role of autocatalysis in oxidation reactions when using molecular oxygen as the terminal oxidant. Oxygen in its ground state is a diradical, and depending on the reaction conditions, it can initiate oxidation through radical pathways through mechanisms which do not require the presence of a catalyst. Consequently, we contrast the oxidation of benzyl alcohol with oxidation of α-pinene. For benzyl alcohol oxidation the initial reaction is the oxidative dehydrogenation to form benzaldehyde, a non-radical process; but the subsequent over-oxidation to benzoic acid is a radical process. In this case the role of the autocatalysed reaction can be minimised. With α-pinene, the oxidation reaction is via radical pathways and now the autocatalysed reaction can be dominant and, indeed, can be the preferred pathway for the formation of high yields of the desired verbenone product

    The effect of ring size on the selective carboxylation of cycloalkene oxides

    Get PDF
    Carbon dioxide utilisation technology can contribute to the reduction of atmospheric CO2 levels both through its sequestration from flue gases and indirectly by relieving pressure on conventional feedstocks in chemical manufacturing. A promising approach is to employ CO2 to produce valuable cyclic carbonates (CCs) in reaction with suitable epoxides. This also has the advantage that carbon dioxide replaces toxic and hazardous reactants such as phosgene. In earlier work we have investigated the synthesis of epoxides from cycloalkenes using supported gold and gold–palladium nanoparticles as catalysts and oxygen from air as the oxidant under solvent free conditions. A strong dependence of epoxide selectivity on ring size was observed with C5 < C6 < C7 ≪ C8. In this study we extend this work to the investigation of cycloaddition of CO2 to different cycloalkene oxides with the ultimate aim of designing a process in which both epoxidation of an alkene and incorporation of CO2 could be achieved in a single process. However, we have found the opposite trend for the selectivity to carbonates: smaller ring cycloalkene oxides giving the highest carbonate selectivities while large rings do not yield CCs at all. The product distributions suggest that an alternative ring opening of the epoxides to yield alcohols and ketones is preferred under all the experimental conditions explored for larger ring systems. Additionally, the mechanism of the CC synthesis using a quaternary ammonium salt and ZnBr2 as the catalyst system was investigated using DFT methods. The results of the calculations support the experimental findings

    Oxidative carboxylation of 1-Decene to 1,2-Decylene carbonate

    Get PDF
    © 2018 The Author(s) Cyclic carbonates are valuable chemicals for the chemical industry and thus, their efficient synthesis is essential. Commonly, cyclic carbonates are synthesised in a two-step process involving the epoxidation of an alkene and a subsequent carboxylation to the cyclic carbonate. To couple both steps into a direct oxidative carboxylation reaction would be desired from an economical view point since additional work-up procedures can be avoided. Furthermore, the efficient sequestration of CO 2 , a major greenhouse gas, would also be highly desirable. In this work, the oxidative carboxylation of 1-decene is investigated using supported gold catalysts for the epoxidation step and tetrabutylammonium bromide in combination with zinc bromide for the cycloaddition of carbon dioxide in the second step. The compatibility of the catalysts for both steps is explored and a detailed study of catalyst deactivation using X-ray photoelectron spectroscopy and scanning electron microscopy is reported. Promising selectivity of the 1,2-decylene carbonate is observed using a one-pot two-step approach
    • …
    corecore