427 research outputs found

    Polyterthiophenes incorporating 3,4-difluorothiophene units : application in organic field-effect transistors

    Get PDF
    Two terthiophenes bearing core fluorinated thienyl units have been synthesised as potential semiconductor materials for organic field-effect transistors. Polymerisation of these compounds has been achieved using conventional iron(III) chloride oxidative coupling methods and by electrochemical oxidation. Characterisation of the fluorinated materials has been achieved by absorption spectroscopy and cyclic voltammetry. A soluble hexyl-functionalised polymer (poly8b) was used in an OFET device; hole mobilities were measured up to 3 × 10−3 cm2 · V−1 · s−1, and the device had an on/off ratio of 105 and a turn-on voltage of +4 V

    Adjoint and Hamiltonian input-output differential equations

    Get PDF
    Based on developments in the theory of variational and Hamiltonian control systems by Crouch and van der Schaft (1987), this paper answers two questions: given an input-output differential equation description of a nonlinear system, what is the adjoint variational system in input-output differential form and what are the conditions for the system to be Hamiltonian, i.e., such that the variational and the adjoint variational systems coincide? This resulting set of conditions is then used to generalize classical conditions such as the well-known Helmholtz conditions for the inverse problem in classical mechanics

    Eukaryotic RNases H1 act processively by interactions through the duplex RNA-binding domain

    Get PDF
    Ribonucleases H have mostly been implicated in eliminating short RNA primers used for initiation of lagging strand DNA synthesis. Escherichia coli RNase HI cleaves these RNA–DNA hybrids in a distributive manner. We report here that eukaryotic RNases H1 have evolved to be processive enzymes by attaching a duplex RNA-binding domain to the RNase H region. Highly conserved amino acids of the duplex RNA-binding domain are required for processivity and nucleic acid binding, which leads to dimerization of the protein. The need for a processive enzyme underscores the importance in eukaryotic cells of processing long hybrids, most of which remain to be identified. However, long RNA–DNA hybrids formed during immunoglobulin class-switch recombination are potential targets for RNase H1 in the nucleus. In mitochondria, where RNase H1 is essential for DNA formation during embryogenesis, long hybrids may be involved in DNA replication

    The mammalian cone visual cycle promotes rapid M/L-cone pigment regeneration independently of the interphotoreceptor retinoid-binding protein

    Get PDF
    Rapid regeneration of the visual pigment following its photoactivation is critical for the function of cone photoreceptors throughout the day. Though the reactions of the visual cycle in the retinal pigment epithelium (RPE) that recycle chromophore for rod pigment regeneration are well characterized, the corresponding mechanisms that enable rapid regeneration of cone pigment are poorly understood. A key remaining question is the relative contribution of the recently discovered cone-specific retina visual cycle and the classic RPE-dependent visual cycle to mammalian cone pigment regeneration. In addition, it is not clear what role, if any, the abundant interphotoreceptor matrix protein, IRBP, presumed to facilitate the traffic of chromophore, plays in accelerating mammalian cone pigment regeneration. To address these issues we used transretinal recordings to evaluate M/L-cone pigment regeneration in isolated retinas and eyecups from control and IRBP-deficient mice. Remarkably, the mouse retina promoted M/L-cone dark adaptation 8-fold faster than the RPE. However, complete cone recovery required both visual cycles. We conclude that the retina visual cycle is critical for the initial rapid regeneration of mouse M/L-cone pigment during dark adaptation whereas the slower RPE visual cycle is required to complete the process. While the deletion of IRBP reduced the amplitude and slowed the kinetics of mouse M/L-cone photoresponses, cone adaptation in bright steady light and the kinetics of cone dark adaptation were not affected in isolated retina or in intact eyecup. Thus, IRBP does not accelerate cone pigment regeneration and is not critical for the function of mouse M/L-cones in bright light

    A variational problem on Stiefel manifolds

    Full text link
    In their paper on discrete analogues of some classical systems such as the rigid body and the geodesic flow on an ellipsoid, Moser and Veselov introduced their analysis in the general context of flows on Stiefel manifolds. We consider here a general class of continuous time, quadratic cost, optimal control problems on Stiefel manifolds, which in the extreme dimensions again yield these classical physical geodesic flows. We have already shown that this optimal control setting gives a new symmetric representation of the rigid body flow and in this paper we extend this representation to the geodesic flow on the ellipsoid and the more general Stiefel manifold case. The metric we choose on the Stiefel manifolds is the same as that used in the symmetric representation of the rigid body flow and that used by Moser and Veselov. In the extreme cases of the ellipsoid and the rigid body, the geodesic flows are known to be integrable. We obtain the extremal flows using both variational and optimal control approaches and elucidate the structure of the flows on general Stiefel manifolds.Comment: 30 page

    ZnII(atsm) is protective in amyotrophic lateral sclerosis model mice via a copper delivery mechanism

    Get PDF
    AbstractMutations in the metalloprotein Cu,Zn-superoxide dismutase (SOD1) cause approximately 20% of familial cases of amyotrophic lateral sclerosis (ALS), a fatal neurodegenerative disease for which effective therapeutics do not yet exist. Transgenic rodent models based on over-expression of mutant SOD1 have been developed and these have provided opportunity to test new therapeutic strategies and to study the mechanisms of mutant SOD1 toxicity. Although the mechanisms of mutant SOD1 toxicity are yet to be fully elucidated, incorrect or incomplete metallation of SOD1 confers abnormal folding, aggregation and biochemical properties, and improving the metallation state of SOD1 provides a viable therapeutic option. The therapeutic effects of delivering copper (Cu) to mutant SOD1 have been demonstrated recently. The aim of the current study was to determine if delivery of zinc (Zn) to SOD1 was also therapeutic. To investigate this, SOD1G37R mice were treated with the metal complex diacetyl-bis(4-methylthiosemicarbazonato)zincII [ZnII(atsm)]. Treatment resulted in an improvement in locomotor function and survival of the mice. However, biochemical analysis of spinal cord tissue collected from the mice revealed that the treatment did not increase overall Zn levels in the spinal cord nor the Zn content of SOD1. In contrast, overall levels of Cu in the spinal cord were elevated in the ZnII(atsm)-treated SOD1G37R mice and the Cu content of SOD1 was also elevated. Further experiments demonstrated transmetallation of ZnII(atsm) in the presence of Cu to form the Cu-analogue CuII(atsm), indicating that the observed therapeutic effects for ZnII(atsm) in SOD1G37R mice may in fact be due to in vivo transmetallation and subsequent delivery of Cu

    Surfactant protein D increases fusion of Mycobacterium tuberculosis- containing phagosomes with lysosomes in human macrophages

    Get PDF
    Lung surfactant protein D (SP-D) binds to Mycobacterium tuberculosis surface lipoarabinomannan and results in bacterial agglutination, reduced uptake, and inhibition of growth in human macrophages. Here we show that SP-D limits the intracellular growth of bacilli in macrophages by increasing phagosome-lysosome fusion but not by generating a respiratory burst

    Regulatory effects of interleukin‐11 during acute lung inflammatory injury

    Full text link
    The role of interleukin‐11 (IL‐11) was evaluated in the IgG immune complex model of acute lung injury in rats. IL‐11 mRNA and protein were both up‐regulated during the course of this inflammatory response. Exogenously administered IL‐11 substantially reduced, in a dose‐dependent manner, the intrapulmonary accumulation of neutrophils and the lung vascular leak of albumin. These in vivo anti‐inflammatory effects of IL‐11 were associated with reduced NF‐κB activation in lung, reduced levels of tumor necrosis factor α (TNF‐α) in bronchoalveolar lavage (BAL) fluids, and diminished up‐regulation of lung vascular ICAM‐1. It is interesting that IL‐11 did not affect BAL fluid content of the CXC chemokines, macrophage inflammatory protein‐2 (MIP‐2) and cytokine‐inducible neutrophil chemoattractant (CINC); the presence of IL‐11 did not affect these chemokines. However, BAL content of C5a was reduced by IL‐11. These data indicate that IL‐11 is a regulatory cytokine in the lung and that, like other members of this family, its anti‐inflammatory properties appear to be linked to its suppression of NF‐κB activation, diminished production of TNF‐α, and reduced up‐regulation of lung vascular ICAM‐1. J. Leukoc. Biol. 66: 151–157; 1999.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/141937/1/jlb0151.pd

    Multiple paths through the complexities of globalization: : The next three years of Competition & Change

    Get PDF
    This document is the Accepted Manuscript version of the following article: Hulya Dagdeviren, Peter Lund-Thomsen and Leo McCann, 'Multiple paths through the complexities of globalization: The next three years of Competition & Change'. The final, definitive version of this paper has been published in Competition & Change, Vol 2 (1): 3-9, advanced access publication 1 February 2017. DOI: 10.1177/1024529416680875. © The Author(s) 2016. Published by SAGE Publishing, All rights reserved.Peer reviewe
    corecore